Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Deng Bin, Mu Tianzhu, Zhou Xiangxing, Yuan Tiechui. Study on powder metallurgical properties of molten salt electrolytic titanium powder[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 35-42. doi: 10.7513/j.issn.1004-7638.2024.05.005
Citation: Deng Bin, Mu Tianzhu, Zhou Xiangxing, Yuan Tiechui. Study on powder metallurgical properties of molten salt electrolytic titanium powder[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 35-42. doi: 10.7513/j.issn.1004-7638.2024.05.005

Study on powder metallurgical properties of molten salt electrolytic titanium powder

doi: 10.7513/j.issn.1004-7638.2024.05.005
More Information
  • Received Date: 2024-02-07
    Available Online: 2024-10-30
  • Publish Date: 2024-10-30
  • Electrolytic titanium powder was utilized as the raw material for fabricating porous titanium through press-sintering technique. The forming and sintering characteristics were investigated. Then the mechanical properties, pore structure, pore size distribution and permeability of the prepared porous titanium were characterized. The results show that with the increase of pressing pressure, the bridging space between the particles of electrolytic titanium powder with secondary particle characteristics gradually disappears. Porous titanium powder with different porosity and mechanical strength can be obtained by adjusting the molding pressure and sintering temperature. Compared to HDH titanium powder, electrolytic titanium powder exhibits better molding performance, easier sintering densification, higher porosity, greater permeability, and a higher Young’s modulus. A porous titanium was obtained by using electrolytic titanium powder with a particle size of 74~104 μm at 70~110 MPa and then sintering it at 1110 ℃, whose Young’s modulus is similar to that of human cancellous bone. The permeability and maximum pore diameter meet the requirements of TG035 and TG020 in the standard for sintered metal filtration elements (GBT6887-2019), indicating promising applications in the fields of human cancellous bone implants and filtration materials.
  • loading
  • [1]
    Barbis D P, Gasior R M, Walker G P, et al. Titanium powders from the hydride-dehydride process[M]//Titanium Powder Metallurgy. Elsevier, 2015: 101-116.
    [2]
    Allaire, Entezarian, Tsantrizos. Method of production of metal and ceramic powders by plasma atomization: US,US5707419[P]. 1998-01-13.
    [3]
    Zou Yu, Liao Xianjie, Lai Qi, et al. Research status of preparation technology of spherical titanium powder for 3D printing[J]. Materials China, 2019,38(11):1093-1101. (邹宇, 廖先杰, 赖奇, 等. 3D打印用球形钛粉制备技术研究现状[J]. 中国材料进展, 2019,38(11):1093-1101. doi: 10.7502/j.issn.1674-3962.201808033

    Zou Yu, Liao Xianjie, Lai Qi, et al. Research status of preparation technology of spherical titanium powder for 3D printing[J]. Materials China, 2019, 38(11): 1093-1101. doi: 10.7502/j.issn.1674-3962.201808033
    [4]
    Withers J C, Loutfy R O. Thermal and electrochemical process for metal production: US,US20050294872[P]. 2005-12-06.
    [5]
    Jiao Shuqiang, Zhu Hongmin. Novel metallurgical process for titanium production[J]. Journal of Materials Research, 2011,21(9):2172-2175.
    [6]
    Jiao Shuqiang, Zhu Hongmin. Electrolysis of Ti2CO solid solution prepared by TiC and TiO2[J]. Journal of Alloys and Compounds, 2007,438:243-246.
    [7]
    Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000, 407:361-364.
    [8]
    Zhang Chao, Liu Na, Zhu Guofeng. Innovative clean titanium reduction process-USTB process[J]. Metal World, 2015(1):70-73. (张超, 刘娜, 朱国峰. 新型 USTB 法清洁钛提取技术[J]. 世界金属, 2015(1):70-73.

    Zhang Chao, Liu Na, Zhu Guofeng. Innovative clean titanium reduction process-USTB process[J]. Metal World, 2015(1): 70-73.
    [9]
    Wu Yinjiang, Liang Yongren. Progress in titanium powder and titanium powder metallurgy products[J]. Materials China, 2011(6):44-50. (吴引江, 梁永仁. 钛粉末及其粉末冶金制品的发展现状[J]. 中国材料进展, 2011(6):44-50.

    Wu Yinjiang, Liang Yongren. Progress in titanium powder and titanium powder metallurgy products[J]. Materials China, 2011(6): 44-50.
    [10]
    Wang Jianzhong, Ao Qingbo, Jing Peng, et al. Preparation and application of porous titanium[J]. Rare Metal Materials and Engineering, 2022(5):51. (王建忠, 敖庆波, 荆鹏, 等. 多孔钛的制备及应用[J]. 稀有金属材料与工程, 2022(5):51.

    Wang Jianzhong, Ao Qingbo, Jing Peng, et al. Preparation and application of porous titanium[J]. Rare Metal Materials and Engineering, 2022(5): 51.
    [11]
    Li Changyi. Porous metal materials and their application in stomatology[J]. Journal of Oral Materials and Instruments, 2023,32(1):1-6. (李长义. 多孔金属材料及其在口腔医学中的应用[J]. 口腔材料器械杂志, 2023,32(1):1-6. doi: 10.11752/j.kqcl.2023.01.01

    Li Changyi. Porous metal materials and their application in stomatology[J]. Journal of Oral Materials and Instruments, 2023, 32(1): 1-6. doi: 10.11752/j.kqcl.2023.01.01
    [12]
    Pan Zhicheng. Study on the morphology and properties of graded porous titanium prepared by TiH2 vacuum sintering[D]. Kunming:Kunming University of Science and Technology, 2023. (潘志铖. TiH2真空烧结制备梯度多孔钛形貌及性能研究[D]. 昆明:昆明理工大学, 2023.

    Pan Zhicheng. Study on the morphology and properties of graded porous titanium prepared by TiH2 vacuum sintering[D]. Kunming: Kunming University of Science and Technology, 2023.
    [13]
    Peng Yuqing. Process and properties of ordered porous titanium prepared by sintering TiH 2[D]. Kunming:Kunming University of Science and Technology, 2023. (彭玉青. 烧结TiH2制备有序多孔钛工艺与性能研究[D]. 昆明:昆明理工大学, 2023.

    Peng Yuqing. Process and properties of ordered porous titanium prepared by sintering TiH 2[D]. Kunming:Kunming University of Science and Technology, 2023.
    [14]
    Qian M, Xu W, Brandt M, et al. Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties[J]. MRS Bull, 2016, 41 (10): 775-783.
    [15]
    Trevisan F, Calignano F, Aversa A, et al. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications[J]. J. Appl. Biomater Funct. Mater, 2018,16(2):57-67.
    [16]
    Laptev A, Vyal O, Bram M, et al. Green strength of powder compacts provided for production of highly porous titanium parts[J]. Powder Metallurgy, 2005, 48: 358-364.
    [17]
    Yan Beilei, Wang Jun, Yang Tao, et al. Synthesis of Ti powders with different morphologies via controlling the valence state of the titanium ion in KCl-NaCl molten salt[J]. Journal of Electroanalytical Chemistry, 2020,876:114496. doi: 10.1016/j.jelechem.2020.114496
    [18]
    Zhu Fuxing, Qiu Kehui, Sun Zhaohui, et al. Electrochemical deposition of titanium ions in molten salts[J]. Iron Steel Vanadium Titanium, 2017,38(4):12-18. (朱福兴, 邱克辉, 孙朝晖, 等. 熔盐电解中钛离子电化学沉积行为研究[J]. 钢铁钒钛, 2017,38(4):12-18. doi: 10.7513/j.issn.1004-7638.2017.04.003

    Zhu Fuxing, Qiu Kehui, Sun Zhaohui, et al. Electrochemical deposition of titanium ions in molten salts[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 12-18. doi: 10.7513/j.issn.1004-7638.2017.04.003
    [19]
    Ashby M F, Evans A G, Fleck N A. Metal foams: A design guide [M]. Liu P S, Wang X S, Li Y X translated. Beijing: Metallurgy Industry Press, 2006: 15-16.
    [20]
    Liu Jie. Preparation and mechanical properties of porous titanium[D]. Shenyang: Northeastern University, 2015. (刘杰. 多孔钛的制备及力学性能研究[D]. 沈阳: 东北大学, 2015.

    Liu Jie. Preparation and mechanical properties of porous titanium[D]. Shenyang: Northeastern University, 2015.
    [21]
    Heary R F, Parvathreddy N, Sampath S, et al. Elastic modulus in the selection of interbody implants[J]. Journal of Spine Surgery, 2017, 3(2): 163.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (274) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return