Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Wang Xiaohui, Guo Jie, Xu Jinxiu, Tan Ling, Xie Lihua, Hu Yijie. Characterization of surface properties of titanium dioxide by inverse gas chromatography[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 43-48. doi: 10.7513/j.issn.1004-7638.2024.05.006
Citation: Wang Xiaohui, Guo Jie, Xu Jinxiu, Tan Ling, Xie Lihua, Hu Yijie. Characterization of surface properties of titanium dioxide by inverse gas chromatography[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 43-48. doi: 10.7513/j.issn.1004-7638.2024.05.006

Characterization of surface properties of titanium dioxide by inverse gas chromatography

doi: 10.7513/j.issn.1004-7638.2024.05.006
More Information
  • Received Date: 2024-02-05
    Available Online: 2024-10-30
  • Publish Date: 2024-10-30
  • The surface energy and acid/base constants of three kinds of titanium dioxide (TiO2) were measured by inverse gas chromatography (IGC) to investigate the effect of organic treatment on the surface properties of TiO2. The non-polar surface energy of the samples were calculated by using different molecular probes at different temperatures. The results indicate that non-polar surface energy $ \gamma\mathrm{_s^d} $of TiO2 decreases with the increase of organic cladding amount at the same temperature (within the testing temperature range). As the temperature increases, $ \gamma\mathrm{_s^d} $of TiO2 decreases. Meanwhile, the acid-base component of surface energy was studied by using polar molecules as probe molecules, revealing that the surface of titanium dioxide is amphoacid. Since the surface of TiO2 presents acidic, the reaction between organic agents and the hydroxyl groups on the surface of TiO2 leads to the decrease in the surface acid sites and thus the surface acidity of TiO2. However, when excessive organic agent is added, some hydroxyl groups generated by organic agents hydrolyzation would not react with TiO2, resulting in the increment of TiO2 surface acidity.
  • loading
  • [1]
    Cao Jingwen, Wang Qiang, Hu Dingkai, et al. Surface properties of fluorine-functionalized metal–organic frameworks based on inverse gas chromatography[J]. Langmuir, 2023,39(25):8737-8748. doi: 10.1021/acs.langmuir.3c00735
    [2]
    Bai Wenli, Pakdel Esfandiar, Li Quanxiang, et al. Inverse gas chromatography (IGC) for studying the cellulosic materials surface characteristics: A mini review[J]. Cellulose, 2023,30(6):3379-3396. doi: 10.1007/s10570-023-05116-9
    [3]
    Yusuf K, Natraj A, Li K, et al. Inverse gas chromatography demonstrates the crystallinity-dependent physicochemical properties of two-dimensional covalent organic framework stationary phases[J]. Chemistry of Materials, 2023,35(4):1691-1701. doi: 10.1021/acs.chemmater.2c03448
    [4]
    Jacob P N, Berg J C. Acid-base surface energy characterization of microcrystalline cellulose and two wood pulp fiber types using inverse gas chromatography[J]. Langmuir, 1994,10(9):3086-3093. doi: 10.1021/la00021a036
    [5]
    Schultz J, Lavielle L, Martin C. The role of the interface in carbon fibre-epoxy composites[J]. Journal of Adhesion, 1987,23(1):45-60. doi: 10.1080/00218468708080469
    [6]
    Dorris G M, Gray D G. Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers[J]. Journal of Colloid & Interface Science, 1980,77(2):353-362.
    [7]
    Dong S, Brendlé M, Donnet J B. Study of solid surface polarity by inverse gas chromatography at infinite dilution[J]. Chromatographia, 1989,28:469-472. doi: 10.1007/BF02261062
    [8]
    Flour C S, Eugène Papirer. Gas-solid chromatography: a quick method of estimating surface free energy variations induced by the treatment of short glass fibers[J]. Journal of Colloid & Interface Science, 1983,91(1):69-75.
    [9]
    Brookman D J, Sawyer D T. Specific interactions affecting gas chromatographic retention for modified alumina columns[J]. Analytical Chemistry, 1968,40(1):106-110. doi: 10.1021/ac60257a061
    [10]
    Masato Ohta, Graham Buckton. The use of inverse gas chromatography to assess the acid–base contributions to surface energies of cefditoren pivoxil and methacrylate copolymers and possible links to instability[J]. International Journal of Pharmaceutics, 2004,272:121-128. doi: 10.1016/j.ijpharm.2003.12.007
    [11]
    Wu Guangzhao. Studies on the surface properties of modified-silica and its reinforcing effect on SBR[D]. Guangzhou: South China University of Technology, 2015. (吴广照. 改性白炭黑的表面性质对丁苯橡胶补强性能影响的研究[D]. 广州: 华南理工大学, 2015.

    Wu Guangzhao. Studies on the surface properties of modified-silica and its reinforcing effect on SBR[D]. Guangzhou: South China University of Technology, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (259) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return