| Citation: | Liu Enhao, Chen Chao, Dang Jie. Review of MXenes as electrocatalysts for hydrogen production[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 49-62. doi: 10.7513/j.issn.1004-7638.2024.05.007 |
| [1] |
Cui Yanglansen, Cao Zhenjiang, Zhang Yongzheng, et al. Single-atom sites on MXenes for energy conversion and storage[J]. Small Science, 2021,1(6):2100017. doi: 10.1002/smsc.202100017
|
| [2] |
Cheng Yan, Gong Juhui, Cao Bo, et al. Ultrafine VN nanodots induced generation of abundant cobalt single-atom active sites on nitrogen-doped carbon nanotube for efficient hydrogen evolution[J]. Journal of Energy Chemistry, 2022,68:646-657. doi: 10.1016/j.jechem.2021.11.035
|
| [3] |
Liu Min, Yao Zhendong, Gu Jing, et al. Issues and opportunities facing hydrolytic hydrogen production materials[J]. Chemical Engineering Journal, 2023,461:141918. doi: 10.1016/j.cej.2023.141918
|
| [4] |
Chen Chao, Li Jinzhou, Lü Zepeng, et al. Recent strategies to improve the catalytic activity of pristine MOFs and their derived catalysts in electrochemical water splitting[J]. International Journal of Hydrogen Energy, 2023,48(78):30435-30463. doi: 10.1016/j.ijhydene.2023.04.241
|
| [5] |
Chen Jieli, Gao Xiaohong, Li Jing, et al. Progress in MXene-based catalysts for oxygen evolution reaction[J]. Electron, 2024,2(1):e17. doi: 10.1002/elt2.17
|
| [6] |
Aggarwal Priyanka, Sarkar Debasish, Awasthi Kamlendra, et al. Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: current developments and future challenges[J]. Coordination Chemistry Reviews, 2022,452:214289. doi: 10.1016/j.ccr.2021.214289
|
| [7] |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
|
| [8] |
Naguib Michael, Barsoum Michel W, Gogotsi Yury. Ten years of progress in the synthesis and development of MXenes[J]. Advanced Materials, 2021,33(39):2103393. doi: 10.1002/adma.202103393
|
| [9] |
Naguib Michael, Mashtalir Olha, Carle Joshua, et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012,6(2):1322-1331. doi: 10.1021/nn204153h
|
| [10] |
Wen Yangyang, Rufford Thomas E, Chen Xingzhu, et al. Nitrogen-doped Ti3C2T x MXene electrodes for high-performance supercapacitors[J]. Nano Energy, 2017,38:368-376. doi: 10.1016/j.nanoen.2017.06.009
|
| [11] |
Lu Ming, Li Haojie, Han Wenjuan, et al. 2D titanium carbide (MXene) electrodes with lower-f surface for high performance lithium-ion batteries[J]. Journal of Energy Chemistry, 2019,31:148-153. doi: 10.1016/j.jechem.2018.05.017
|
| [12] |
Hu Feiyue, Wang Xiaohan, Bao Shen, et al. Tailoring electromagnetic responses of delaminated Mo2TiC2T x MXene through the decoration of Ni particles of different morphologies[J]. Chemical Engineering Journal, 2022,440:135855. doi: 10.1016/j.cej.2022.135855
|
| [13] |
Lü Zepeng, Fei Jinshuai, You Yang, et al. Synergism and anion-cation dual chemical substitution in heterostructure sprouted on MXene enable high-efficiency and stable overall water splitting[J]. Journal of Materials Science & Technology, 2023,147:207-216.
|
| [14] |
Ma Wansen, Liu Dong, Gao Feiyu, et al. P-doped MoS2/Ni2P/ Ti3C2T x heterostructures for efficient hydrogen evolution reaction in alkaline media[J]. Journal of the American Ceramic Society, 2022,105(10):6096-6104. doi: 10.1111/jace.18622
|
| [15] |
Lü Zepeng, Ma Wansen, Dang Jie, et al. Induction of Co2P growth on a MXene (Ti3C2T x)-modified self-supporting electrode for efficient overall water splitting[J]. The Journal of Physical Chemistry Letters, 2021,12(20):4841-4848. doi: 10.1021/acs.jpclett.1c01345
|
| [16] |
Lü Zepeng, Ma Wansen, Wang Meng, et al. Co-Constructing interfaces of multiheterostructure on MXene (Ti3C2T x)‐modified 3d self-supporting electrode for ultraefficient electrocatalytic her in alkaline media[J]. Advanced Functional Materials, 2021,31(29):2102576. doi: 10.1002/adfm.202102576
|
| [17] |
Naguib Michael, Mochalin Vadym N, Barsoum Michel W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005.
|
| [18] |
Anasori Babak, Lukatskaya Maria R, Gogotsi Yury. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017,2(2):1-17.
|
| [19] |
Pang Jinbo, Mendes Rafael G, Bachmatiuk Alicja, et al. Applications of 2d MXenes in energy conversion and storage systems[J]. Chemical Society Reviews, 2019,48(1):72-133. doi: 10.1039/C8CS00324F
|
| [20] |
Gogotsi Yury, Anasori Babak. The rise of MXenes[J]. ACS Nano, 2019,13(8):8491-8494. doi: 10.1021/acsnano.9b06394
|
| [21] |
Wang Limeng, Li Yaru, Ren Yongpeng, et al. Research progress of MXene-based materials in electrocatalysis[J]. Acta Materiae Compositae Sinica, 2023,40(9):4917-4931. (王利萌, 李亚如, 任永鹏, 等. MXene基材料在电催化领域的研究进展[J]. 复合材料学报, 2023,40(9):4917-4931.
Wang Limeng, Li Yaru, Ren Yongpeng, et al. Research progress of MXene-based materials in electrocatalysis[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4917-4931.
|
| [22] |
Soomro Razium A, Zhang Peng, Fan Baomin, et al. Progression in the oxidation stability of MXenes[J]. Nano-Micro Letters, 2023,15(1):1-18. doi: 10.1007/s40820-022-00977-4
|
| [23] |
VahidMohammadi Armin, Rosen Johanna, Gogotsi Yury. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021,372(6547):eabf1581. doi: 10.1126/science.abf1581
|
| [24] |
Hantanasirisakul Kanit, Gogotsi Yury. Electronic and optical properties of 2d transition metal carbides and nitrides (MXenes)[J]. Advanced Materials, 2018,30(52):1804779. doi: 10.1002/adma.201804779
|
| [25] |
Sharma Piyush, Kainth Shagun, Pandey Om Prakash, et al. Customized synthesis of 2d Ti3C2 MXene for improved overall water splitting[J]. ACS Applied Nano Materials, 2023,6(23):21788-21802. doi: 10.1021/acsanm.3c03986
|
| [26] |
Yuan Wenyu, Cheng Laifei, An Yurong, et al. MXene nanofibers as highly active catalysts for hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2018,6(7):8976-8982.
|
| [27] |
Seh Zhi Wei, Fredrickson Kurt D, Anasori Babak, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution[J]. ACS Energy Letters, 2016,1(3):589-594. doi: 10.1021/acsenergylett.6b00247
|
| [28] |
Tran Minh H, Schäfer Timo, Shahraei Ali, et al. Adding a new member to the MXene family: synthesis, structure, and electrocatalytic activity for the hydrogen evolution reaction of V4C3T x[J]. ACS Applied Energy Materials, 2018,1(8):3908-3914. doi: 10.1021/acsaem.8b00652
|
| [29] |
Tan Yuanbo, Zhu Zhenye, Zhang Xueting, et al. Nb4C3T x (MXene) as a new stable catalyst for the hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2021,46(2):1955-1966. doi: 10.1016/j.ijhydene.2020.10.046
|
| [30] |
Wang Xiaoxu, Wang Changxin, Ci Shinan, et al. Accelerating 2d MXene catalyst discovery for the hydrogen evolution reaction by computer-driven workflow and an ensemble learning strategy[J]. Journal of Materials Chemistry A, 2020,8(44):23488-23497. doi: 10.1039/D0TA06583H
|
| [31] |
Zheng Jingnan, Sun Xiang, Qiu Chenglong, et al. High-throughput screening of hydrogen evolution reaction catalysts in MXene materials[J]. The Journal of Physical Chemistry C, 2020,124(25):13695-13705. doi: 10.1021/acs.jpcc.0c02265
|
| [32] |
Sun Xiang, Zheng Jingnan, Gao Yijing, et al. Machine-learning-accelerated screening of hydrogen evolution catalysts in MBenes materials[J]. Applied Surface Science, 2020,526:146522. doi: 10.1016/j.apsusc.2020.146522
|
| [33] |
Zhang Mengling, Lu Qingjie, Lu Qiang, et al. Influence of surface end-groups on hydrogen production from electrolyzed water in MXene materials[J]. Journal of Functional Materials, 2023,54(1):1229-1236. (张萌玲, 卢清杰, 卢强, 等. 表面端基对MXene材料电解水制氢的影响[J]. 功能材料, 2023,54(1):1229-1236. doi: 10.3969/j.issn.1001-9731.2023.01.033
Zhang Mengling, Lu Qingjie, Lu Qiang, et al. Influence of surface end-groups on hydrogen production from electrolyzed water in MXene materials[J]. Journal of Functional Materials, 2023, 54(1): 1229-1236. doi: 10.3969/j.issn.1001-9731.2023.01.033
|
| [34] |
Li Shuang, Tuo Ping, Xie Junfeng, et al. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution[J]. Nano Energy, 2018,47:512-518. doi: 10.1016/j.nanoen.2018.03.022
|
| [35] |
Jiang Yanan, Sun Tao, Xie Xi, et al. Oxygen-functionalized ultrathin Ti3C2T x MXene for enhanced electrocatalytic hydrogen evolution[J]. ChemSusChem, 2019,12(7):1368-1373. doi: 10.1002/cssc.201803032
|
| [36] |
Gao Guoping, Mullane Anthony PO’, Du Aijun. 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction[J]. ACS Catalysis, 2017,7(1):494-500. doi: 10.1021/acscatal.6b02754
|
| [37] |
Sarfraz Bilal, Taqi Muhammad Mehran, Baig Mutawara Mahmood, et al. HF free greener Cl-terminated MXene as novel electrocatalyst for overall water splitting in alkaline media[J]. International Journal of Energy Research, 2022,46(8):10942-10954. doi: 10.1002/er.7895
|
| [38] |
Zhao Qian, Zhu Qizhen, Miao Jiawei, et al. 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium–sulfur batteries[J]. Nanoscale, 2019,11(17):8442-8448. doi: 10.1039/C8NR09653H
|
| [39] |
Wu Tong, Pang Xin, Zhao Siwei, et al. One-step construction of ordered sulfur-terminated tantalum carbide MXene for efficient overall water splitting[J]. Small Structures, 2022,3(3):2100206. doi: 10.1002/sstr.202100206
|
| [40] |
Abraham B Moses. Fusing machine learning strategy with density functional theory to hasten the discovery of 2d MXene based catalysts for hydrogen generation[J]. Journal of Materials Chemistry A, 2018,6(12):4948-4954. doi: 10.1039/C7TA10374C
|
| [41] |
Le Thi Anh, Bui Quoc Viet, Tran Ngoc Quang, et al. Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2019,7(19):16879-16888.
|
| [42] |
Yoon Yeoheung, Tiwari Anand P, Lee Minhe, et al. Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution[J]. Journal of Materials Chemistry A, 2018,6(42):20869-20877. doi: 10.1039/C8TA08197B
|
| [43] |
Qu Guoxing, Zhou Yang, Wu Tianli, et al. Phosphorized MXene-phase molybdenum carbide as an earth-abundant hydrogen evolution electrocatalyst[J]. ACS Applied Energy Materials, 2018,1(12):7206-7212. doi: 10.1021/acsaem.8b01642
|
| [44] |
Ding Bo, Ong Wee-Jun, Jiang Jizhou, et al. Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M = Ti, Mo)[J]. Applied Surface Science, 2020,500:143987. doi: 10.1016/j.apsusc.2019.143987
|
| [45] |
Zubair Muhammad, Hassan Muhammad Muneeb Ul, Mehran Muhammad Taqi, et al. 2D MXenes and their heterostructures for HER, OER and overall water splitting: a review[J]. International Journal of Hydrogen Energy, 2022,47(5):2794-2818. doi: 10.1016/j.ijhydene.2021.10.248
|
| [46] |
Li Jinzhou, Hou Chengzhen, Chen Chao, et al. Collaborative interface optimization strategy guided ultrafine RuCo and MXene heterostructure electrocatalysts for efficient overall water splitting[J]. ACS Nano, 2023,17(11):10947-10957. doi: 10.1021/acsnano.3c02956
|
| [47] |
Shi Xintong, Du Mingxuan, Jing Hongmei, et al. Bold innovation of noble metal support system: Ru-RuO2/MXene@CC for efficient hydrogen evolution reaction in water electrolysis[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023,679:132638. doi: 10.1016/j.colsurfa.2023.132638
|
| [48] |
Nguyen Thanh Hai, Tran Phan Khanh Linh, Tran Duy Thanh, et al. Ru-Ru2P hetero-cluster promoted V2CT x sheets-based electrocatalyst enables industrial-level AEM water electrolysis[J]. Applied Catalysis B: Environmental, 2024,343:123517. doi: 10.1016/j.apcatb.2023.123517
|
| [49] |
Zhang Yi, Zhang Zhaohui, Yu Zhiran, et al. Ruthenium oxide nanoparticles immobilized on Ti3C2 MXene nanosheets for boosting seawater electrolysis[J]. ACS Applied Materials & Interfaces, 2023,15(50):58345-58355.
|
| [50] |
Tiwari Jitendra N, Umer Muhammad, Bhaskaran Gokul, et al. Atomic layers of ruthenium oxide coupled with Mo2TiC2T x MXene for exceptionally high catalytic activity toward water oxidation[J]. Applied Catalysis B: Environmental, 2023,339:123139. doi: 10.1016/j.apcatb.2023.123139
|
| [51] |
Lü Zepeng, Wang Meng, Liu Dong, et al. Synergetic effect of Ni2P and MXene enhances catalytic activity in the hydrogen evolution reaction[J]. Inorganic Chemistry, 2021,60(3):1604-1611. doi: 10.1021/acs.inorgchem.0c03072
|
| [52] |
Liu Dong, Lü Zepeng, Dang Jie, et al. Nitrogen-doped MoS2/Ti3C2T x heterostructures as ultra-efficient alkaline her electrocatalysts[J]. Inorganic Chemistry, 2021,60(13):9932-9940. doi: 10.1021/acs.inorgchem.1c01193
|
| [53] |
Li Xinglong, He Huan, Yu Yihang, et al. Boosting oxygen evolution reaction by synergistically coupling amorphous high-entropy borate feconimnbox with MXene[J]. Applied Surface Science, 2024,645:158838. doi: 10.1016/j.apsusc.2023.158838
|
| [54] |
Liu Xinyu, Wang Min, Ji Shan, et al. Adjusting surface electron density of heterostructured NiCo LDH/MXene/NF material to improve its electrocatalytic performance in hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2024,67:192-199. doi: 10.1016/j.ijhydene.2024.04.171
|
| [55] |
Li Jinzhou, Chen Chao, Lü Zepeng, et al. Constructing heterostructures of ZIF-67 derived C, N doped Co2P and Ti2VC2T x MXene for enhanced OER[J]. Journal of Materials Science & Technology, 2023,145:74-82.
|
| [56] |
Li Jinzhou, Chen Chao, Dang Jie. Study on the electrocatalytic performance of MXene/cobalt phosphide composites for hydrogen production[J]. Iron Steel Vanadium Titanium, 2023,44(2):48-54. (李金洲, 陈超, 党杰. MXene/磷化钴复合材料电催化制氢性能研究[J]. 钢铁钒钛, 2023,44(2):48-54.
Li Jinzhou, Chen Chao, Dang Jie. Study on the electrocatalytic performance of MXene/cobalt phosphide composites for hydrogen production[J]. Iron Steel Vanadium Titanium, 2023, 44(2): 48-54.
|
| [57] |
Qiao Botao, Wang Aiqin, Yang Xiaofeng, et al. Single-atom catalysis of CO oxidation using Pt1/FeO x[J]. Nature Chemistry, 2011,3(8):634-641. doi: 10.1038/nchem.1095
|
| [58] |
Zhang Jinqiang, Zhao Yufei, Guo Xin, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis, 2018,1(12):985-992. doi: 10.1038/s41929-018-0195-1
|
| [59] |
Zhang Jiangjiang, Wang Erqing, Cui Shiqiang, et al. Single-atom Pt anchored on oxygen vacancy of monolayer Ti3C2T x for superior hydrogen evolution[J]. Nano Letters, 2022,22(3):1398-1405. doi: 10.1021/acs.nanolett.1c04809
|
| [60] |
Lin Wujun, Lu Yingrui, Peng Wei, et al. Atomic bridging modulation of Ir–N, S co-doped MXene for accelerating hydrogen evolution[J]. Journal of Materials Chemistry A, 2022,10(18):9878-9885. doi: 10.1039/D2TA00550F
|
| [61] |
Gu Yitao, Wei Bo, Legut Dominik, et al. Single atom-modified hybrid transition metal carbides as efficient hydrogen evolution reaction catalysts[J]. Advanced Functional Materials, 2021,31(43):2104285. doi: 10.1002/adfm.202104285
|
| [62] |
Wang Changxin, Wang Xiaoxu, Zhang Tianyao, et al. A descriptor for the design of 2d MXene hydrogen evolution reaction electrocatalysts[J]. Journal of Materials Chemistry A, 2022,10(35):18195-18205. doi: 10.1039/D2TA02837A
|
| [63] |
Zhao Xin, Li Wanpeng, Cao Yanhui, et al. Dual-atom Co/Ni electrocatalyst anchored at the surface-modified Ti3C2T x MXene enables efficient hydrogen and oxygen evolution reactions[J]. ACS Nano, 2024,18(5):4256-4268. doi: 10.1021/acsnano.3c09639
|
| [64] |
Xi Qing, Xie Fangxia, Sun Zijun, et al. NiRu–Mo2Ti2C3O2 as an efficient catalyst for alkaline hydrogen evolution reactions: the role of bimetallic site interactions in promoting volmer-step kinetics[J]. Physical Chemistry Chemical Physics, 2024,26(8):7166-7176. doi: 10.1039/D3CP05892A
|
| [65] |
Li Pengkun, Zhu Jinguo, Handoko Albertus D, et al. High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification[J]. Journal of Materials Chemistry A, 2018,6(10):4271-4278. doi: 10.1039/C8TA00173A
|