Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Yin Xin, Li Junzhao, Li Haiming, Fan Cheng, Liu Wenzheng, Peng Shengjun, Sun Qingjie, Zeng Xianshan. Study on microstructure and properties of laser welded thin-walled straight seam titanium pipes[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 70-73. doi: 10.7513/j.issn.1004-7638.2024.05.009
Citation: Yin Xin, Li Junzhao, Li Haiming, Fan Cheng, Liu Wenzheng, Peng Shengjun, Sun Qingjie, Zeng Xianshan. Study on microstructure and properties of laser welded thin-walled straight seam titanium pipes[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 70-73. doi: 10.7513/j.issn.1004-7638.2024.05.009

Study on microstructure and properties of laser welded thin-walled straight seam titanium pipes

doi: 10.7513/j.issn.1004-7638.2024.05.009
More Information
  • Received Date: 2023-11-27
    Available Online: 2024-10-30
  • Publish Date: 2024-10-30
  • The thin-walled Gr.1 pure titanium straight seam welded pipe was welded by laser, and the samples obtained from the experiment were analyzed for macroscopic morphology, microstructure and mechanical properties. The results show that the weld width of longitudinally welded thin-walled pipe is relatively narrow, with an outer weld width of 1.51 mm and an inner weld width of 0.98 mm. The microstructure of titanium welded pipe weld is mainly columnar α phase, serrated α phase and a small amount of needle shape α phase. The results of flaring, flattening, and reverse bending tests are all qualified. Finally, an expansion test was conducted on the sample tube, and the expansion amplitude reached 18.4%, with a relatively uniform deformation in appearance. From the microstructure after tube expansion, it can be seen that after tube expansion, most of the grains in the weld seam, heat affected zone, and base metal are significantly deformed and broken due to tensile action, and many needle shaped α phase grains are produced , but no cracks occurred.
  • loading
  • [1]
    Ma Lei, Fu Chaoqiang. Research progress on the application of laser welding technology[J]. Die Mould Manufacture, 2023,23(11):157-159. (马磊, 付朝强. 激光焊接技术的应用研究进展[J]. 模具制造, 2023,23(11):157-159.

    Ma Lei, Fu Chaoqiang. Research progress on the application of laser welding technology[J]. Die Mould Manufacture, 2023, 23(11): 157-159.
    [2]
    Huang Jiuling, Kong Liang, Wang Min, et al. Welding of titanium and titanium alloy thin plates[J]. Welding Technology, 2018, 47(11): 1-5. (黄九龄, 孔谅, 王敏, 等. 钛及钛合金薄板的焊接[J]. 焊接技术, 2018, 47(11): 1-5.

    Huang Jiuling, Kong Liang, Wang Min, et al. Welding of titanium and titanium alloy thin plates[J]. Welding Technology, 2018, 47(11): 1-5.
    [3]
    Zhen Zuyang. Study on laser-arc hybrid high-speed welding process of TA2 pure titanium sheet[D]. Harbin: Harbin Institute of Technology, 2021. (甄祖阳. TA2纯钛薄板激光-电弧复合高速焊接工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    Zhen Zuyang. Study on laser-arc hybrid high-speed welding process of TA2 pure titanium sheet[D]. Harbin: Harbin Institute of Technology, 2021.
    [4]
    Zhao Xiaolong, Wang Bin, Gong Shuili, et al. Study on microstructure and mechanical properties of laser welded joint of 2 mm thick TC4 titanium alloy[J]. Hot Working Technology, 2017,46(9):209-211. (赵晓龙, 王彬, 巩水利, 等. 2.0 mm厚TC4钛合金激光焊接接头组织与力学性能研究[J]. 热加工工艺, 2017,46(9):209-211.

    Zhao Xiaolong, Wang Bin, Gong Shuili, et al. Study on microstructure and mechanical properties of laser welded joint of 2 mm thick TC4 titanium alloy[J]. Hot Working Technology, 2017, 46(9): 209-211.
    [5]
    Sun Wenjun, Wang Shanlin, Chen Yuhua, et al. Development of advanced welding technologies for titanium alloys[J]. Aeronautical Manufacturing Technology, 2019,62(18):63-72. (孙文君, 王善林, 陈玉华, 等. 钛合金先进焊接技术研究现状[J]. 航空制造技术, 2019,62(18):63-72.

    Sun Wenjun, Wang Shanlin, Chen Yuhua, et al. Development of advanced welding technologies for titanium alloys[J]. Aeronautical Manufacturing Technology, 2019, 62(18): 63-72.
    [6]
    Yu Hang, Li Junzhao, Zhang Wangcheng, et al. Research progress of weld formation and performance control of thin plate TC4 titanium alloy by laser welding[J]. Iron Steel Vanadium Titanium, 2022,43(1):53-66. (于航, 李军兆, 张望成, 等. 薄壁TC4钛合金激光焊缝成型与性能调控研究进展[J]. 钢铁钒钛, 2022,43(1):53-66.

    Yu Hang, Li Junzhao, Zhang Wangcheng, et al. Research progress of weld formation and performance control of thin plate TC4 titanium alloy by laser welding[J]. Iron Steel Vanadium Titanium, 2022, 43(1): 53-66.
    [7]
    Wang Boshi, Kong Liang, Li Fang, et al. Microstructure and properties of TIG arc assisted laser welding TA2 thin-walled straight pipe[J]. Hot Working Technology, 2023(5):135-140. (王博士, 孔谅, 李芳, 等. TIG电弧辅助激光焊TA2直缝薄壁焊管的组织性能研究[J]. 热加工工艺, 2023(5):135-140.

    Wang Boshi, Kong Liang, Li Fang, et al. Microstructure and properties of TIG arc assisted laser welding TA2 thin-walled straight pipe[J]. Hot Working Technology, 2023(5): 135-140.
    [8]
    Zhou Yang. Research on arc-assisted TA2 thin plate laser welding process and joint performance[D]. Shanghai: Shanghai Jiao Tong University, 2020. (周洋. 基于电弧辅助的TA2薄板激光焊工艺与接头性能研究[D]. 上海: 上海交通大学, 2020.

    Zhou Yang. Research on arc-assisted TA2 thin plate laser welding process and joint performance[D]. Shanghai: Shanghai Jiao Tong University, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (269) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return