Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Li Yifan, Dai Qiao, Guo Cheng, Feng Libin. Influence of pre strain on the mechanical properties of TA2 and the establishment of constitutive model[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 83-90. doi: 10.7513/j.issn.1004-7638.2024.05.011
Citation: Li Yifan, Dai Qiao, Guo Cheng, Feng Libin. Influence of pre strain on the mechanical properties of TA2 and the establishment of constitutive model[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 83-90. doi: 10.7513/j.issn.1004-7638.2024.05.011

Influence of pre strain on the mechanical properties of TA2 and the establishment of constitutive model

doi: 10.7513/j.issn.1004-7638.2024.05.011
More Information
  • Received Date: 2024-03-01
    Available Online: 2024-10-30
  • Publish Date: 2024-10-30
  • To investigate the effect of prestrain on the mechanical properties of TA2, room temperature tensile tests were conducted on the TA2 original material and specimens with the prestrains of 10%, 20%, and 30%. Based on the influence of prestrain on the mechanical properties of TA2, prestrain variables were introduced to modify the Hollomon model, Ludwik model, and Swift model to predict the mechanical behavior of prestrained TA2. The results show that with the increase of prestrain, the yield strength of TA2 increases significantly, the tensile strength slightly increases, and the elongation after fracture, strength plastic product, and strain hardening indexes decrease. Prestrain enhances the strength of TA2 by consuming plastic properties, and the plastic strain energy density and fracture strain energy density of TA2 decrease significantly with the increase of prestrain. The average correlation coefficients between the predicted results of each modified model and the experimental values are 0.9862, 0.9994, and 0.9744, with the maximum prediction errors of 6.34%, 8.33%, and 16.42%, respectively. Among them, the Hollomon model has a simplified structure and good prediction accuracy, making it the best choice to describe the effect of prestrain on the mechanical behavior of TA2.
  • loading
  • [1]
    Liu G, Sun H, Wang E, et al. Effect of deformation on the microstructure of cold-rolled TA2 alloy after low-temperature nitriding[J]. Coatings, 2021,11(8):1011. doi: 10.3390/coatings11081011
    [2]
    Tian Xiaodan. Key points for manufacturing supervision and inspection of titanium pressure vessels[J]. Chemical Equipment Technology, 2020,41(4):52-54. (田小丹. 钛制压力容器制造监检要点[J]. 化工装备技术, 2020,41(4):52-54.

    Tian Xiaodan. Key points for manufacturing supervision and inspection of titanium pressure vessels[J]. Chemical Equipment Technology, 2020, 41(4): 52-54.
    [3]
    Liu P, Wen Z, Wang Z, et al. Effect of pre-strain on microstructure and stamping ability of TA2 titanium alloy and H260 low-alloy steel[C]. Journal of Physics: Conference Series. IOP Publishing, 2023, 2483(1): 012064.
    [4]
    Li Kaishang, Peng Jian, Peng Jian. The influence of pre strain on the mechanical behavior of austenitic stainless steel and the construction of a constitutive model[J]. Materials Engineering, 2018,46(11):148-154. (李凯尚, 彭剑, 彭健. 预应变对奥氏体不锈钢力学行为的影响及本构模型的构建[J]. 材料工程, 2018,46(11):148-154. doi: 10.11868/j.issn.1001-4381.2017.000815

    Li Kaishang, Peng Jian, Peng Jian. The influence of pre strain on the mechanical behavior of austenitic stainless steel and the construction of a constitutive model[J]. Materials Engineering, 2018, 46(11): 148-154. doi: 10.11868/j.issn.1001-4381.2017.000815
    [5]
    Xu Jingsheng, Wang Manfu. Effect of tensile pre-strain on mechanical properties of austenitic 301 stainless steel[J]. Journal of Materials Engineering and Performance, 19 Octobe2023: 1-8.
    [6]
    Chang Le, Zhou Changyu, He Xiaohua. The effects of prestrain and subsequent annealing on tensile properties of CP-Ti[J]. Metals, 2017,7(3):99. doi: 10.3390/met7030099
    [7]
    Peng Jian, Li Kaishang, Pei Junfeng, et al. The effect of pre-strain on tensile behaviour of 316L austenitic stainless steel[J]. Materials Science and Technology, 2018,34(5):547-560. doi: 10.1080/02670836.2017.1421735
    [8]
    Zulfi F R, Korda A A. Effect of pre-strain on mechanical properties and deformation induced transformation of 304 stainless steel[C]. Journal of Physics: Conference Series. IOP Publishing, 2016, 739(1): 012039.
    [9]
    Saravanan K, Manikandan P, Jalaja K, et al. Effect of uniaxial pre-strain on tensile, work hardening, fracture toughness, and fatigue crack growth rate of titanium alloy Ti–6Al–4V[J]. Metallurgical and Materials Transactions A, 2023,54(9):3603-3619. doi: 10.1007/s11661-023-07117-6
    [10]
    Hu Hanjiang, Zhao Aimin, Yin Zhukai, et al. The effect of pre strain on the mechanical properties and hardening behavior of TRIP steel[J]. Journal of Materials Heat Treatment, 2016,37(5):128-132. (胡汉江, 赵爱民, 印珠凯, 等. 预应变对TRIP钢力学性能及硬化行为的影响[J]. 材料热处理学报, 2016,37(5):128-132.

    Hu Hanjiang, Zhao Aimin, Yin Zhukai, et al. The effect of pre strain on the mechanical properties and hardening behavior of TRIP steel[J]. Journal of Materials Heat Treatment, 2016, 37(5): 128-132.
    [11]
    Xue Zhichao, Peng Jian, Wang Linhai, et al. Comparative study on the effect of strain strengthening on the mechanical properties of S30403 and S30408 stainless steel[J]. Hot Working Process, 2022,51(6):26-31. (薛智超, 彭剑, 汪林海, 等. 应变强化对S30403与S30408不锈钢力学性能影响的对比研究[J]. 热加工工艺, 2022,51(6):26-31.

    Xue Zhichao, Peng Jian, Wang Linhai, et al. Comparative study on the effect of strain strengthening on the mechanical properties of S30403 and S30408 stainless steel[J]. Hot Working Process, 2022, 51(6): 26-31.
    [12]
    Peng Jian, Li Kaishang, Dai Qiao. Mechanical properties of pre-strained austenitic stainless steel from the view of energy density[J]. Results in Physics, 2018,10:187-193. doi: 10.1016/j.rinp.2018.05.034
    [13]
    Zhao Qing, Chang Le, Zhou Changyu, et al. The effect of pre strain on the tensile mechanical properties of industrial pure titanium TA2 welded joints[J]. Iron Steel Vanadium Titanium, 2023,44(3):68-74. (赵青, 常乐, 周昌玉, 等. 预应变对工业纯钛TA2焊接接头拉伸力学性能的影响[J]. 钢铁钒钛, 2023,44(3):68-74. doi: 10.7513/j.issn.1004-7638.2023.03.010

    Zhao Qing, Chang Le, Zhou Changyu, et al. The effect of pre strain on the tensile mechanical properties of industrial pure titanium TA2 welded joints[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 68-74. doi: 10.7513/j.issn.1004-7638.2023.03.010
    [14]
    Gao Huilin. Analysis and review of bending strength ratio of pipeline steel[J]. Welded Pipe, 2010,33(6):10-14. (高惠临. 管线钢屈强比分析与评述[J]. 焊管, 2010,33(6):10-14. doi: 10.3969/j.issn.1001-3938.2010.06.002

    Gao Huilin. Analysis and review of bending strength ratio of pipeline steel[J]. Welded Pipe, 2010, 33(6): 10-14. doi: 10.3969/j.issn.1001-3938.2010.06.002
    [15]
    Gao Yi, Peng Jian, Dai Qiao, et al. The effect of strain strengthening on the fatigue behavior of 022Cr17Ni12Mo2 stainless steel[J]. Journal of Central South University (Natural Science Edition), 2020,51(1):23-32. (高毅, 彭剑, 代巧, 等. 应变强化对022Cr17Ni12Mo2不锈钢疲劳行为的影响[J]. 中南大学学报(自然科学版), 2020,51(1):23-32.

    Gao Yi, Peng Jian, Dai Qiao, et al. The effect of strain strengthening on the fatigue behavior of 022Cr17Ni12Mo2 stainless steel[J]. Journal of Central South University (Natural Science Edition), 2020, 51(1): 23-32.
    [16]
    Jin Fengnian, Jiang Meirong, Gao Xiaoling. Method for defining damage variables based on energy dissipation[J]. Journal of Rock Mechanics and Engineering, 2004(12):1976-1980. (金丰年, 蒋美蓉, 高小玲. 基于能量耗散定义损伤变量的方法[J]. 岩石力学与工程学报, 2004(12):1976-1980. doi: 10.3321/j.issn:1000-6915.2004.12.004

    Jin Fengnian, Jiang Meirong, Gao Xiaoling. Method for defining damage variables based on energy dissipation[J]. Journal of Rock Mechanics and Engineering, 2004(12): 1976-1980. doi: 10.3321/j.issn:1000-6915.2004.12.004
    [17]
    Wang Zhen. Research on mechanical properties and forming limit of aluminum lithium alloy sheets[D]. Tangshan: North China University of Technology, 2020. (王震. 铝锂合金板材的力学特性和成形极限研究[D]. 唐山: 华北理工大学, 2020.

    Wang Zhen. Research on mechanical properties and forming limit of aluminum lithium alloy sheets[D]. Tangshan: North China University of Technology, 2020.
    [18]
    Lei Yu. Study on plastic deformation behavior of typical high-strength steel under high strain rate of pre strain[D]. Wuhan: Wuhan University of Technology, 2018. (雷雨. 预应变高应变速率下典型高强钢的塑性变形行为研究[D]. 武汉: 武汉理工大学, 2018.

    Lei Yu. Study on plastic deformation behavior of typical high-strength steel under high strain rate of pre strain[D]. Wuhan: Wuhan University of Technology, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (271) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return