| Citation: | Wang Wei. Microstructures, properties and high-temp oxidation behaviors of Ti-45Al-8Nb-xHf alloys[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 91-97, 115. doi: 10.7513/j.issn.1004-7638.2024.05.012 |
| [1] |
Chen Yuyong, Wu Jingxi. Research and advances in processing, working, microstructure, properties and industrial application of β-solidifying TiAl alloy[J]. Iron Steel Vanadium Titaniun, 2021,42(6):1-16. (陈玉勇, 吴敬玺. β相凝固TiAl合金的制备、加工、组织、性能及工业应用研究进展[J]. 钢铁钒钛, 2021,42(6):1-16. doi: 10.7513/j.issn.1004-7638.2021.06.001
Chen Yuyong, Wu Jingxi. Research and advances in processing, working, microstructure, properties and industrial application of β-solidifying TiAl alloy[J]. Iron Steel Vanadium Titaniun, 2021, 42(6): 1-16. doi: 10.7513/j.issn.1004-7638.2021.06.001
|
| [2] |
Zhu Dongdong, Yan Jiangfei, Jin Yuliang, et al. Pressure-induced excellent corrosion resistance of Ti-45Al-8Nb alloy[J]. Materials Letters, 2024,355:135446. doi: 10.1016/j.matlet.2023.135446
|
| [3] |
Chandran Anju, Ganesan Hariprasath, Cyron Christian J. Studying the effects of Nb on high-temperature deformation in TiAl alloys using atomistic simulations[J]. Materials & Design, 2024,237:112596.
|
| [4] |
Cao Jun, Sun Tielong, Guo Zhichao, et al. Simultaneous enhancement of strength and ductility in high Nb-TiAl by Si alloying[J]. Journal of Materials Science & Technology, 2024,177:128-132.
|
| [5] |
Guo Yingchao, Liang Yongfeng, Sun Dingbang, et al. Refinement and enhancement of high-Nb TiAl alloy via in-situ precipitation of Ti2AlC and TiB2 nanoparticles[J]. Journal of Materials Research and Technology, 2024,29:1052-1065. doi: 10.1016/j.jmrt.2024.01.122
|
| [6] |
Imayev V M, Ganeev A A, Trofimov D M, et al. Effect of Nb, Zr and Zr+Hf on the microstructure and mechanical properties of β-solidifying γ-TiAl alloys[J]. Materials Science and Engineering: A, 2021,817:141388. doi: 10.1016/j.msea.2021.141388
|
| [7] |
Jack Nelson, Mohammad Ghadyani, Claire Utton, et al. A study of the effects of Al, Cr, Hf, and Ti additions on the microstructure and oxidation of Nb-24Ti-18Si silicide based alloys[J]. Materials, 2018,11(9):1579-1579. doi: 10.3390/ma11091579
|
| [8] |
Guo Fangyu, Holec David, Wang Jianchuan, et al. Impact of V, Hf and Si on oxidation processes in Ti-Al-N: Insights from ab initio molecular dynamics[J]. Surface & Coatings Technology, 2020,381:125125.
|
| [9] |
Takeshi Nagase, Mitsuharu Todai, Wang Pan, et al. Design and development of (Ti, Zr, Hf)-Al based medium entropy alloys and high entropy alloys[J]. Materials Chemistry and Physics, 2022,276:12-15.
|
| [10] |
Xiang Henggao, Chen Yang, Qi Zhixiang, et al. Mechanical behavior of TiAl alloys[J]. Science China Technological Sciences, 2023,66(9):2457-2480. doi: 10.1007/s11431-022-2186-9
|
| [11] |
Huang Feng, Liang Sicheng, Hu Shangxing, et al. Status and progress in strengthening and toughening of TiAl alloy[J]. Specal Casting & Nonferrous Alloys, 2023,43(11):1441-1446. (黄锋, 梁思诚, 胡尚兴, 等. TiAl合金强韧化研究现状与进展[J]. 特种铸造及有色合金, 2023,43(11):1441-1446.
Huang Feng, Liang Sicheng, Hu Shangxing, et al. Status and progress in strengthening and toughening of TiAl alloy[J]. Specal Casting & Nonferrous Alloys, 2023, 43(11): 1441-1446.
|
| [12] |
Wang Zite, Zheng Gong, Qi Zixiang, et al. Structures, microstructures, properties, and applications of TiAl alloys[J]. Chin Sci Bull, 2023,68:3259-3274. (王子特, 郑功, 祁志祥, 等. TiAl合金结构、组织、性能与应用[J]. 科学通报, 2023,68:3259-3274. doi: 10.1360/TB-2023-0037
Wang Zite, Zheng Gong, Qi Zixiang, et al. Structures, microstructures, properties, and applications of TiAl alloys[J]. Chin Sci Bull, 2023, 68: 3259-3274. doi: 10.1360/TB-2023-0037
|
| [13] |
Feng Lihan, Li Bo, Li Qiang, et al. Enhancement of mechanical properties and oxidation resistance of TiAl alloy with addition of Nb and Mo alloying elements[J]. Materials Chemistry and Physics, 2024,316:129148. doi: 10.1016/j.matchemphys.2024.129148
|
| [14] |
Tian Shiwei, Zhang Tengkun, Zeng Shangwu, et al. Cyclic oxidation kinetics and thermal stress evolution of TiAl alloys at high temperature[J]. Metals, 2023,14(1):28. doi: 10.3390/met14010028
|
| [15] |
Liu Renci, Wang Peng, Cao Ruxin, et al. Influence of thermal exposure at 700 oC on the microstructure and morphology in the surface of β-solidifying γ-TiAl alloys[J]. Acta Metallurgica Sinica, 2022,58(8):1003-1012. (刘仁慈, 王鹏, 曹如心, 等. 700 ℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022,58(8):1003-1012.
Liu Renci, Wang Peng, Cao Ruxin, et al. Influence of thermal exposure at 700 oC on the microstructure and morphology in the surface of β-solidifying γ-TiAl alloys[J]. Acta Metallurgica Sinica, 2022, 58(8): 1003-1012.
|
| [16] |
Birks Nell. Introduction to the high temperature oxidation of meatals[M]. 2nd edition. Cambridge University, 2009: 101-157.
|
| [17] |
Jin Xuchen, Ye Peihao, Ji Hongrui, et al. Oxidation resistance of powder metallurgy Ti–45Al–10Nb alloy at high temperature[J]. Int. J. Miner. Metall. Mater., 2022,29(12):2232-2240. doi: 10.1007/s12613-021-2320-4
|
| [18] |
Lai Xuping, Li Tianfang, Liu Rui, et al. Effect of Nb, Hf and Zr on oxidation resistance of γ-TiAl alloy[J]. Materials Reports, 2021, 35(Z1): 374-377. (赖旭平, 李天方, 刘瑞, 等. 元素Nb、Hf、Zr对γ-TiAl合金抗氧化性能的影响[J]. 材料导报, 2021, 35(Z1): 374-377.
Lai Xuping, Li Tianfang, Liu Rui, et al. Effect of Nb, Hf and Zr on oxidation resistance of γ-TiAl alloy[J]. Materials Reports, 2021, 35(Z1): 374-377.
|
| [19] |
Wang Yanjing, Li Fei. Study on the high-temperature oxidation resistance of Ti-45Al-8(Nb, Hf, Y)-0.2B alloys[J]. Rare Metal Materials and Engineering, 2016,45(1):132-136. (王艳晶, 李菲. Ti-45Al-8(Nb, Hf, Y)-0.2B合金高温抗氧化性研究[J]. 稀有金属材料与工程, 2016,45(1):132-136.
Wang Yanjing, Li Fei. Study on the high-temperature oxidation resistance of Ti-45Al-8(Nb, Hf, Y)-0.2B alloys[J]. Rare Metal Materials and Engineering, 2016, 45(1): 132-136.
|