Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Zheng Kui, Wang Wei, Gan Xian, Xie Hong’en, Fu Weiguo, Dong Xiaosen. Research on theoretical combustion temperature control of V-Ti magnetite blast furnace smelting[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 130-138. doi: 10.7513/j.issn.1004-7638.2024.05.017
Citation: Zheng Kui, Wang Wei, Gan Xian, Xie Hong’en, Fu Weiguo, Dong Xiaosen. Research on theoretical combustion temperature control of V-Ti magnetite blast furnace smelting[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 130-138. doi: 10.7513/j.issn.1004-7638.2024.05.017

Research on theoretical combustion temperature control of V-Ti magnetite blast furnace smelting

doi: 10.7513/j.issn.1004-7638.2024.05.017
More Information
  • Received Date: 2023-11-10
    Available Online: 2024-10-30
  • Publish Date: 2024-10-30
  • The theoretical combustion temperature in front of the tuyere is one of the important parameters for evaluating the thermal state of the blast furnace hearth. On the basis of the traditional theoretical combustion temperature calculation model, the influence of ash content, unburned coal powder, and SiO2 gasification rate on the theoretical combustion temperature was comprehensively considered, and the theoretical combustion temperature calculation model was revised. The research results indicate that, the influence of factors ignored by traditional calculation models on the theoretical combustion temperature ranges from 53 to 55 ℃. The influence of oxygen enrichment rate, coal injection rate, blowing humidity, air temperature, coal fuel rate, coal preheating temperature, ash content, and SiO2 gasification rate on the theoretical combustion temperature decreases in sequence. The suitable theoretical combustion temperature control range for the blast furnace at Panzhihua Steel & Vanadium Co., Ltd. is 2160~2320 ℃. And under the condition of constant blowing humidity, the suitable control range for the theoretical combustion temperature is 2220~2 280 ℃. After applying real-time online calculation of theoretical combustion temperature to the regulation of blast furnace production operations, it effectively promotes
  • loading
  • [1]
    Wu Shengli, Yu Xiaobo, Chen Hui, et al. Calculation of theoretical flame temperature in a blast furnace[J]. Journal of University of Science and Technology Beijing, 2008,12(30):1432-1438. (吴胜利, 余晓波, 陈辉,等. 高炉理论燃烧温度的计算[J]. 北京科技大学学报, 2008,12(30):1432-1438.

    Wu Shengli, Yu Xiaobo, Chen Hui, et al. Calculation of theoretical flame temperature in a blast furnace[J]. Journal of University of Science and Technology Beijing, 2008, 12(30): 1432-1438.
    [2]
    Na Shuren. Analysis of ironmaking calculation[M]. Beijing, Metallurgical Industry Press, 2010. (那树人. 炼铁计算辨析[M]. 北京, 冶金工业出版社, 2010.

    Na Shuren. Analysis of ironmaking calculation[M]. Beijing, Metallurgical Industry Press, 2010.
    [3]
    Sun Lianyou, Xu Shugang. The calculation of the theoretical burning temperature in front of the tuyere[J]. Bengang Technology, 2008(4):8-10. (孙连友, 徐书刚. 风口前理论燃烧温度的简易计算[J]. 本钢技术, 2008(4):8-10.

    Sun Lianyou, Xu Shugang. The calculation of the theoretical burning temperature in front of the tuyere[J]. Bengang Technology, 2008(4): 8-10.
    [4]
    Xu Shugang, Tian Hui. The calculation on line of theoretical burning temperature in front of the tuyere[J]. Bengang Technology, 2000(4):7-8. (徐书刚, 田辉. 风口前理论燃烧温度的在线计算[J]. 本钢技术, 2000(4):7-8.

    Xu Shugang, Tian Hui. The calculation on line of theoretical burning temperature in front of the tuyere[J]. Bengang Technology, 2000(4): 7-8.
    [5]
    Zhang Jianliang, Yang Tianjun, Gao Zhengkai, et al. A new method to determine the decomposition heat of coal during PCI for BF[J]. Journal of University of Science and Technology Beijing, 2001,4(23):308-310. (张建良, 杨天钧, 高征铠,等. 高炉喷煤过程煤粉分解热确定的新方法[J]. 北京科技大学学报, 2001,4(23):308-310.

    Zhang Jianliang, Yang Tianjun, Gao Zhengkai, et al. A new method to determine the decomposition heat of coal during PCI for BF[J]. Journal of University of Science and Technology Beijing, 2001, 4(23): 308-310.
    [6]
    Zhang Jianliang, Qiu Jiayong, Guo Hongwei. Research of theoretical flame temperature in blast furnace tuyere[J]. Iron and Steel, 2012,7(47):10-14. (张建良, 邱家用, 国宏伟. 高炉风口区理论燃烧温度的研究[J]. 钢铁, 2012,7(47):10-14.

    Zhang Jianliang, Qiu Jiayong, Guo Hongwei. Research of theoretical flame temperature in blast furnace tuyere[J]. Iron and Steel, 2012, 7(47): 10-14.
    [7]
    Zhang Er’hua, Wu Keng, Wan Peng. Effect of SiO2 reduction on the theoretical flame temperature before the tuyere in a blast furnace[J]. Journal of University of Science and Technology Beijing, 2010,11(32):1406-1411. (张二华, 吴铿, 万鹏. SiO2还原对高炉风口前理论燃烧温度的影响[J]. 北京科技大学学报, 2010,11(32):1406-1411.

    Zhang Er’hua, Wu Keng, Wan Peng. Effect of SiO2 reduction on the theoretical flame temperature before the tuyere in a blast furnace[J]. Journal of University of Science and Technology Beijing, 2010, 11(32): 1406-1411.
    [8]
    Liu Chengsong, Li Jingshe, Tang Haiyan. Improvements on calculation model of theoretical combustion temperature in the tuyere raceway of BF[J]. Journal of Northeastern University(Natural Science), 2015,3(36):392-396. (刘成松, 李京社, 唐海燕. 高炉风口理论燃烧温度计算模型的改良[J]. 东北大学学报(自然科学版), 2015,3(36):392-396.

    Liu Chengsong, Li Jingshe, Tang Haiyan. Improvements on calculation model of theoretical combustion temperature in the tuyere raceway of BF[J]. Journal of Northeastern University(Natural Science), 2015, 3(36): 392-396.
    [9]
    Dai Bing, Zhang Jianliang, Su Dongxue. Development and practice of theoretical combustion temperature calculation model of blast furnace[J]. Metallurgical Industry Automation, 2012,3(36):54-57. (代兵, 张建良, 苏东学. 高炉理论燃烧温度计算模型的开发与实践[J]. 冶金自动化, 2012,3(36):54-57.

    Dai Bing, Zhang Jianliang, Su Dongxue. Development and practice of theoretical combustion temperature calculation model of blast furnace[J]. Metallurgical Industry Automation, 2012, 3(36): 54-57.
    [10]
    Wang Guangwei, Zhang Jianliang, Su Buxin. Calculation of theoretical combustion temperature in a blast furnace with consideration of chemical equilibrium[J]. Iron and Steel, 2012,4(47):9-13. (王广伟, 张建良, 苏步新. 考虑化学反应平衡的理论燃烧温度计算[J]. 钢铁, 2012,4(47):9-13.

    Wang Guangwei, Zhang Jianliang, Su Buxin. Calculation of theoretical combustion temperature in a blast furnace with consideration of chemical equilibrium[J]. Iron and Steel, 2012, 4(47): 9-13.
    [11]
    Li Zhaoyi. Analysis of the theoretical flame temperature in the front of BF tuyeres[J]. Baosteel Technology, 2011(4):5-7. (李肇毅. 高炉风口理论燃烧温度分析[J]. 宝钢技术, 2011(4):5-7.

    Li Zhaoyi. Analysis of the theoretical flame temperature in the front of BF tuyeres[J]. Baosteel Technology, 2011(4): 5-7.
    [12]
    Xu Hui, Zou Zongshu. Some understanding of theoretical combustion temperature calculation[J]. Ironmaking, 2008,27(4):54. (徐辉, 邹宗树. 对理论燃烧温度计算的一点认识[J]. 炼铁, 2008,27(4):54.

    Xu Hui, Zou Zongshu. Some understanding of theoretical combustion temperature calculation[J]. Ironmaking, 2008, 27(4): 54.
    [13]
    Chen Huabao, Chen Linsen, Xiao Hongtao. Effect of ultra-high oxygen enrichment on theoretical combustion temperature[J]. Research on Iron & Steel, 2011,4(39):1-4. (陈化宝, 陈林森, 肖红涛. 超高富氧对理论燃烧温度的影响[J]. 钢铁研究, 2011,4(39):1-4.

    Chen Huabao, Chen Linsen, Xiao Hongtao. Effect of ultra-high oxygen enrichment on theoretical combustion temperature[J]. Research on Iron & Steel, 2011, 4(39): 1-4.
    [14]
    Guo Honglie, Huang Junjie. Practice of oxygen rich coal injection in Shougang Jingtang 5500 m3 blast furnace[J]. Ironmaking, 2016,6(35):30-32. (郭宏烈, 黄俊杰. 首钢京唐 5500 m3高炉富氧喷煤实践[J]. 炼铁, 2016,6(35):30-32.

    Guo Honglie, Huang Junjie. Practice of oxygen rich coal injection in Shougang Jingtang 5500 m3 blast furnace[J]. Ironmaking, 2016, 6(35): 30-32.
    [15]
    Chen Lingkun, Li Xiangwei, Lu Longwen. Efficient smelting practice of No. 8 blast furnace at Wuhan Iron and steel group[J]. Ironmaking, 2016,5(35):1-7. (陈令坤, 李向伟, 陆隆文,等. 武钢8号高炉高效冶炼实践[J]. 炼铁, 2016,5(35):1-7.

    Chen Lingkun, Li Xiangwei, Lu Longwen. Efficient smelting practice of No. 8 blast furnace at Wuhan Iron and steel group[J]. Ironmaking, 2016, 5(35): 1-7.
    [16]
    Ren Yanjun, Dong Yansheng, Wang Weidong, et al. Economic analysis of oxygen enrichment rate in blast furnace of Shagang[J]. Ironmaking, 2014,6(33):57-59. (任彦军, 董演生, 王卫东, 等. 沙钢高炉富氧率经济性分析[J]. 炼铁, 2014,6(33):57-59.

    Ren Yanjun, Dong Yansheng, Wang Weidong, et al. Economic analysis of oxygen enrichment rate in blast furnace of Shagang[J]. Ironmaking, 2014, 6(33): 57-59.
    [17]
    Bakker T, Tijhuis G J, Bol L C G M. Developments of operating points of the Umuiden blast furnaces[J]. World Iron and Steel, 2014,4:1-8. (Bakker T, Tijhuis G J, Bol L C G M. 艾莫伊登高炉操作要点的发展[J]. 世界钢铁, 2014,4:1-8.

    Bakker T, Tijhuis G J, Bol L C G M. Developments of operating points of the Umuiden blast furnaces[J]. World Iron and Steel, 2014, 4: 1-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(8)

    Article Metrics

    Article views (402) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return