| Citation: | Guo Yanjun, Zhang Wei, Yang Qiaofa, Zhou Changyu. Low cycle fatigue characteristics and life prediction methods for different regions of 316L welded joints[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 183-192. doi: 10.7513/j.issn.1004-7638.2024.05.025 |
| [1] |
Stamford L, Azapagic A. Sustainability indicators for the assessment of nuclear power[J]. Energy, 2011,36(10):6037-6057. doi: 10.1016/j.energy.2011.08.011
|
| [2] |
Zhu Zhiquan, Chen Qian. Opportunities and risks confronted by the development of China’s nuclear power industry and the countermeasures[J]. Journal of East China University of Technology( Social Science), 2017,36(4):318-321. (朱志权, 陈倩. 我国核电产业发展面临的机遇、风险及其对策[J]. 东华理工大学学报(社会科学版), 2017,36(4):318-321.
Zhu Zhiquan, Chen Qian. Opportunities and risks confronted by the development of China’s nuclear power industry and the countermeasures[J]. Journal of East China University of Technology( Social Science), 2017, 36(4): 318-321.
|
| [3] |
Fan Y, Liu T G, Xin L, et al. Thermal aging behaviors of duplex stainless steels used in nuclear power plant: A review[J]. Journal of Nuclear Materials, 2021,544:152693. doi: 10.1016/j.jnucmat.2020.152693
|
| [4] |
Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013,61(3):735-758. doi: 10.1016/j.actamat.2012.11.004
|
| [5] |
Luo Jiong. Influence of environment on fracture toughness and fracture behavior of nuclear safe-end dissimilar metal welded joint[D]. Shenyang: Northeastern University, 2014. (罗炯. 环境对核电接管安全端接头断裂行为及断裂韧性影响[D]. 沈阳: 东北大学, 2014.
Luo Jiong. Influence of environment on fracture toughness and fracture behavior of nuclear safe-end dissimilar metal welded joint[D]. Shenyang: Northeastern University, 2014.
|
| [6] |
Li Yifei, Cai Zhipeng, Tang Zhinan, et al. Weak zone shift in welded joints for low cycle fatigue[J]. Journal of Tsinghua University(Science and Technology), 2015,55(10):1056-1060, 1066. (李轶非, 蔡志鹏, 汤之南, 等. 焊接接头低周疲劳性能薄弱区转移[J]. 清华大学学报(自然科学版), 2015,55(10):1056-1060, 1066.
Li Yifei, Cai Zhipeng, Tang Zhinan, et al. Weak zone shift in welded joints for low cycle fatigue[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1056-1060, 1066.
|
| [7] |
Veerababu J, Goyal S, Sandhya R, et al. Low cycle fatigue behaviour of grade 92 steel weld joints[J]. International Journal of Fatigue, 2017,105:60-70. doi: 10.1016/j.ijfatigue.2017.08.013
|
| [8] |
Veerababu J, Goyal S, Nagesha A. Studies on creep-fatigue interaction behavior of grade 92 steel and its weld joints[J]. International Journal of Fatigue, 2021,149:106307. doi: 10.1016/j.ijfatigue.2021.106307
|
| [9] |
Farragher T P, Scully S, O'Dowd N P, et al. High temperature, low cycle fatigue characterization of P91 weld and heat affected zone material[J]. Journal of Pressure Vessel Technology, 2014,136(2):021403. doi: 10.1115/1.4025943
|
| [10] |
Li Haizhou, Chen Jintao, Chen Hui, et al. Cyclic plastic deformation mechanism and cyclic hardening model of sanicro 25 steel welded joint[J]. Materials Science and Engineering: A, 2021,827:141878. doi: 10.1016/j.msea.2021.141878
|
| [11] |
Rao K B S, Valsan M, Mannan S L. Strain-controlled low-cycle fatigue behavior of type-304 stainless-steel base material, type-308 stainless-steel weld metal and 304-308 stainless-steel weldments[J]. Materials Science & Engineering A, 1990,130(1):67-82.
|
| [12] |
Rao K B S, Sandhya R, Mannan S L. Creep-fatigue interaction behavior of type-308 stainless-steel weld metal and type-304 stainless-steel base-metal[J]. International Journal of Fatigue, 1993,15(3):221-229. doi: 10.1016/0142-1123(93)90180-X
|
| [13] |
Brinkman C, Korth G. Heat-to-heat variations in the fatigue and creep-fatigue behavior of AISI type 304 stainless steel at 593 ℃[J]. Journal of Nuclear Materials, 1973,48(3):293-306. doi: 10.1016/0022-3115(73)90026-3
|
| [14] |
Brinkman C, Koth G, Beeston J. Comparison of the strain-controlled low cycle fatigue behavior of stainless type 304/308 weld and base material[R]. Idaho Falls, ID, Aerojet Nuclear Co. , 1975.
|
| [15] |
Rao K B S, Valsan M, Sandhya R, et al. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless-steel weld metal[J]. Journal of Engineering Materials & Technology, 1994,116(2):193-199.
|
| [16] |
Zhang Yingying, Zhang Xinning, Shi Yu. Microstructure and fracture behavior of 316L stainless steel welded joints under high temperature low cycle[J]. Journal of Materials Science and Engineering, 2019,37(3):501-504. (张莹莹, 张新宁, 师瑀. 316L不锈钢焊接接头高温低周期疲劳显微结构变化和断裂特征[J]. 材料科学与工程学报, 2019,37(3):501-504.
Zhang Yingying, Zhang Xinning, Shi Yu. Microstructure and fracture behavior of 316L stainless steel welded joints under high temperature low cycle[J]. Journal of Materials Science and Engineering, 2019, 37(3): 501-504.
|
| [17] |
Li Mingna, Liu Feng. Effect of tensile dwell on low cycle fatigue cyclic stress response and damage mechanism of 316L austenitic stainless steel welding joint[J]. Transactions of the China Welding Institution, 2014,35(9):87-91, 95. (李明娜, 刘峰. 拉保持对316L奥氏体不锈钢焊接接头低周疲劳循环应力响应及损伤机制的影响[J]. 焊接学报, 2014,35(9):87-91, 95.
Li Mingna, Liu Feng. Effect of tensile dwell on low cycle fatigue cyclic stress response and damage mechanism of 316L austenitic stainless steel welding joint[J]. Transactions of the China Welding Institution, 2014, 35(9): 87-91, 95.
|
| [18] |
Li Mingna, Liu Feng, Yu Hongmiao. Effect of post weld heat treatment on δ-ferrite structure and properties of 308L weldment stainless steel[J]. Hot Working Technology, 2013,42(9):9-11. (李明娜, 刘峰, 于洪淼. 焊后热处理对308L不锈钢焊缝δ-铁素体形态及性能的影响[J]. 热加工工艺, 2013,42(9):9-11.
Li Mingna, Liu Feng, Yu Hongmiao. Effect of post weld heat treatment on δ-ferrite structure and properties of 308L weldment stainless steel[J]. Hot Working Technology, 2013, 42(9): 9-11.
|
| [19] |
Kumar T S, Nagesha A, Kumar J G, et al. Influence of thermal aging on tensile and low cycle fatigue behavior of type 316LN austenitic stainless steel weld joint[J]. Metallurgical and Materials Transactions A, 2018,49a(8):3257-3273.
|
| [20] |
Pham M S, Holdsworth S R. Dynamic strain ageing of AISI 316L during cyclic loading at 300 degrees C: Mechanism, evolution, and its effects[J]. Materials Science and Engineering: A, 2012,556:122-133. doi: 10.1016/j.msea.2012.06.067
|
| [21] |
Mohyla, Kubon P, Cep Z, et al. Evaluation of creep properties of steel P92 and its welded joint[J]. Metalurgija, 2014,53(2):175-178.
|
| [22] |
Coffin L. Predictive parameters and their application to high-temperature, low-cycle fatigue[J]. Fracture London Chapman & Hall, 1969: 643-654.
|
| [23] |
Wen Jianbin, Zhou Changyu, Li Xin, et al. Effect of temperature range on thermal-mechanical fatigue properties of P92 steel and fatigue life prediction with a new cyclic softening model[J]. International Journal of Fatigue, 2019,129:105226. doi: 10.1016/j.ijfatigue.2019.105226
|
| [24] |
Zhu Shunpeng, Huang Hongzhong, He Liping, et al. Improved generalized strain energy damage function method for high temperature low cycle fatigue-creep[J]. Acta Aeronautica et Astronautica Sinica, 2011,32(8):1445-1452. (朱顺鹏, 黄洪钟, 何俐萍, 等. 高温低周疲劳-蠕变的改进型广义应变能损伤函数方法[J]. 航空学报, 2011,32(8):1445-1452.
Zhu Shunpeng, Huang Hongzhong, He Liping, et al. Improved generalized strain energy damage function method for high temperature low cycle fatigue-creep[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1445-1452.
|
| [25] |
Zhu S P, Huang H Z. A generalized frequency separation-strain energy damage function model for low cycle fatigue-creep life prediction[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010,33(4):227-237.
|
| [26] |
Wang Xiaowei, Zhang Wei, Zhang Tianyu, et al. A new empirical life prediction model for 9%–12% Cr steels under low cycle fatigue and creep fatigue interaction loadings[J]. Metals, 2019,9(2):183. doi: 10.3390/met9020183
|
| [27] |
Nagae Y. Evaluation of creep-fatigue life based on fracture energy for modified 9Cr-1Mo steel[J]. Materials Science & Engineering A: Structural Materials Properties Microstructure & Processing, 2013,560:752-758.
|
| [28] |
Nagae Y, Takaya S, Asayama T. Creep-fatigue evaluation by hysteresis energy in modified 9Cr-1Mo steel[J]. Journal of Solid Mechanics and Materials Engineering, 2009,3(3):449-456. doi: 10.1299/jmmp.3.449
|
| [29] |
Yin Peng, Zhang Wei, Guo Shen, et al. Thermomechanical fatigue behaviour and damage mechanisms in a 9% Cr steel: Effect of strain rate[J]. Materials Science and Engineering: A, 2021,815:141308. doi: 10.1016/j.msea.2021.141308
|