Volume 45 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
Li Zhiyu, Tang Ting, Wang Zhenghao, Chen Liang, Zhu Yingming, Wu Kejing, Luo Dongmei. Preparation of lithium manganese iron phosphate cathode material from vanadium tailings[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003
Citation: Li Zhiyu, Tang Ting, Wang Zhenghao, Chen Liang, Zhu Yingming, Wu Kejing, Luo Dongmei. Preparation of lithium manganese iron phosphate cathode material from vanadium tailings[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003

Preparation of lithium manganese iron phosphate cathode material from vanadium tailings

doi: 10.7513/j.issn.1004-7638.2024.06.003
More Information
  • Received Date: 2024-02-29
    Available Online: 2024-12-30
  • Publish Date: 2024-12-30
  • Using the iron-manganese-rich leaching solution generated during vanadium extraction from vanadium slag was used as the raw material, and ferromanganese oxalate dihydrate Mn0.5Fe0.5C2O4∙2H2O was prepared by co-precipitation, and lithium ferromanganese iron phosphate LiFe0.5Mn0.5PO4 anode material was successfully synthesized by the high-temperature solid-phase method using this precursor, which achieved the comprehensive utilization of the iron-manganese resources in the vanadium slag leaching solution. The results showed that under the conditions of initial pH 3.5, temperature 25 ℃, reaction time 90 min, ammonium oxalate addition 1.1 times of the theoretical value, and the addition mode of positive addition, the precipitation efficiency of Fe and Mn were 99.5% and 99.4%, respectively. The depth separation from other impurities was achieved, and the purity of Mn0.5Fe0.5C2O4·2H2O reached 99.97% with small particle sizes and good dispersion. It can be used as a precursor for synthesizing lithium manganese iron phosphate cathode materials, which provides the idea for the industrial production of lithium iron manganese phosphate.
  • loading
  • [1]
    Schmuch Richard, Wagner Ralf, Hörpel Gerhard, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018,3(4):267-278. doi: 10.1038/s41560-018-0107-2
    [2]
    Wang Yanqiang, Ke Junxiong, Wang Biao, et al. Research progress of ferromanganese phosphate precursors[J]. Chemical Management, 2023(25):138-141. (王彦强, 柯君雄, 王镖, 等. 磷酸锰铁前驱体的研究进展[J]. 化工管理, 2023(25):138-141.

    Wang Yanqiang, Ke Junxiong, Wang Biao, et al. Research progress of ferromanganese phosphate precursors[J]. Chemical Management, 2023(25): 138-141.
    [3]
    Franky E, Lora Bedoya, Victoria Salgado, et al. Stable V-doped LiMnPO4/C cathode material for Li-ion batteries produced by a fast and facile microwave-assisted synthesis[J]. Journal of Alloys and Compounds, 2023,938:53-61.
    [4]
    Said Oukahou, Mohammad Maymoun, Abdelali Elomrani, et al. Enhancing the electrochemical performance of olivine LiMnPO4 as cathode materials for Li-ion batteries by Ni-Fe codoping[J]. ACS Applied Energy Materials, 2022, 5(9): 10591-10603.
    [5]
    Du Hao, Kang Yuqiong, Li Chenglei, et al. Easily recyclable lithium-ion batteries: Recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder[J]. Battery Energy, 2023,2(4):20230011.
    [6]
    Li Jing, Qin Yuanbin, Ning Xiaohui, et al. Improved preparation of lithium manganese iron phosphate cathode materials by high-temperature solid-phase method[J]. Materials Guide, 2020,34(16):16001-16005. (李晶, 秦元斌, 宁晓辉, 等. 改进高温固相法制备磷酸锰铁锂正极材料[J]. 材料导报, 2020,34(16):16001-16005. doi: 10.11896/cldb.19070270

    Li Jing, Qin Yuanbin, Ning Xiaohui, et al. Improved preparation of lithium manganese iron phosphate cathode materials by high-temperature solid-phase method[J]. Materials Guide, 2020, 34(16): 16001-16005. doi: 10.11896/cldb.19070270
    [7]
    Liu Hongyu, Ren Li, Li Jiashen, et al. Iron-assisted carbon coating strategy for improved electrochemical LiMn0.8Fe0.2PO4 cathodes[J]. Electrochimica Acta, 2016,212:800-807. doi: 10.1016/j.electacta.2016.07.049
    [8]
    Zhu Bo, Wang Yajing, Wang Yanming, et al. Synthesis of LiMn1- xFe xPO4 nanosheets by solvothermal method and their electrochemical properties[J]. Journal of Artificial Crystals, 2016,45(7):1826-1831. (朱波, 王雅静, 汪燕鸣, 等. 溶剂热法合成LiMn1- xFe xPO4纳米片及其电化学性能[J]. 人工晶体学报, 2016,45(7):1826-1831. doi: 10.3969/j.issn.1000-985X.2016.07.020

    Zhu Bo, Wang Yajing, Wang Yanming, et al. Synthesis of LiMn1-xFexPO4 nanosheets by solvothermal method and their electrochemical properties[J]. Journal of Artificial Crystals, 2016, 45(7): 1826-1831. doi: 10.3969/j.issn.1000-985X.2016.07.020
    [9]
    Lü Wei, Cai Wenlong, Wang Tuan, et al. Thermodynamic equilibrium theory-guided design and synthesis of Mg-doped LiFe0.4Mn0.6PO4/C cathode for lithium-ion batteries[J]. Journal of Energy Chemistry, 2023,9(1):619-627.
    [10]
    Yue Yang, Sun Miaomiao, Yu Wenhao, et al. Recovering Fe, Mn and Li from LiMn1- xFe xPO4 cathode material of spent lithium-ion battery by gradient precipitation[J]. Sustainable Materials and Technologies, 2023,36:1016-1026.
    [11]
    Wang Zhenghao, Chen Liang, Yang Ke, et al. Exploration of a novel vanadium source for the synthesis of a Na3V2(PO4)3 cathode of sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2024,12(5):1973-1983.
    [12]
    Wang Zhenghao, Chen Liang, Qin Zhifeng, et al. A green and efficient route for simultaneous recovery of low valence of vanadium and chromium, titanium and iron from vanadium slag[J]. Resources, Conservation Recycling, 2022,178:106046. doi: 10.1016/j.resconrec.2021.106046
    [13]
    Yin Rentao, Chen Liang, Qin Zhifeng, et al. A novel complexation method for separation and recovery of low valence vanadium, iron and chromium from sulfuric acid solution[J]. Journal of Cleaner Production, 2022,373:133640. doi: 10.1016/j.jclepro.2022.133640
    [14]
    Wang Zhenghao, Chen Liang, Yin Rentao, et al. Preparation of vanadyl sulfate electrolyte for vanadium flow battery from vanadium slag using calcium salt precipitation, sodium carbonate leaching and solvent extraction[J]. Hydrometallurgy, 2023,222:106146. doi: 10.1016/j.hydromet.2023.106146
    [15]
    Zhou Weihua, Li Zhenqin, Duan Meng, et al. Study on complexation and iron removal in vanadium slag leach solution[J]. Iron and Steel Vanadium and Titanium, 2016,37(5):20-24. (周维华, 李振溱, 段猛, 等. 钒渣浸出液中络合除铁的研究[J]. 钢铁钒钛, 2016,37(5):20-24. doi: 10.7513/j.issn.1004-7638.2016.05.004

    Zhou Weihua, Li Zhenqin, Duan Meng, et al. Study on complexation and iron removal in vanadium slag leach solution[J]. Iron and Steel Vanadium and Titanium, 2016, 37(5): 20-24. doi: 10.7513/j.issn.1004-7638.2016.05.004
    [16]
    Ding Dong, Yuta Maeysohi, Masaaki Kubota, et al. A facile way to synthesize carbon-coated LiMn0.7Fe0.3PO4/reduced graphene oxide sandwich-structured composite for lithium-ion batteries[J]. ACS Applied Energy Materials, 2019,2(3):1727-1733. doi: 10.1021/acsaem.8b01821
    [17]
    Yu Songmin, Jin Hongbo, Yang Minghu, et al. Fluorine-doped modified LiMn0.5Fe0.5PO4 cathode materials and their electrochemical properties[J]. Advances in Chemical Engineering, 2023,43(1):302-309. (于松民, 金洪波, 杨明虎, 等. 氟掺杂改性LiMn0.5Fe0.5PO4正极材料及其电化学性能[J]. 化工进展, 2023,43(1):302-309.

    Yu Songmin, Jin Hongbo, Yang Minghu, et al. Fluorine-doped modified LiMn0.5Fe0.5PO4 cathode materials and their electrochemical properties[J]. Advances in Chemical Engineering, 2023, 43(1): 302-309.
    [18]
    Li Gang, Dai Zhongjia, Yang Wensheng, et al. Influence of precursor particle size on the performance of LiNi0.8Co0.1Mn0.1O2 lithium ternary material[J]. Power Supply Technology, 2020,44(2):145-148. (李刚, 戴仲葭, 杨文胜, 等. 前驱体粒径对锂电三元材料LiNi0.8Co0.1Mn0.1O2性能的影响[J]. 电源技术, 2020,44(2):145-148. doi: 10.3969/j.issn.1002-087X.2020.02.001

    Li Gang, Dai Zhongjia, Yang Wensheng, et al. Influence of precursor particle size on the performance of LiNi0.8Co0.1Mn0.1O2 lithium ternary material[J]. Power Supply Technology, 2020, 44(2): 145-148. doi: 10.3969/j.issn.1002-087X.2020.02.001
    [19]
    Yang Hao, Fu Cuimei, Sun Yijian, et al. Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient[J]. Carbon, 2020,158:102-109. doi: 10.1016/j.carbon.2019.11.067
    [20]
    Lin Chengliang, Zhao Meiju, Yuan Yunquan, et al. Research on the performance regulation of LiMn0.75Fe0.25PO4-based hybrid cathode materials[J]. Power Supply Technology, 2023,48(1):45-50. (蔺成良, 赵美菊, 袁云泉, 等. LiMn0.75Fe0.25PO4基混合正极材料性能调控研究[J]. 电源技术, 2023,48(1):45-50.

    Lin Chengliang, Zhao Meiju, Yuan Yunquan, et al. Research on the performance regulation of LiMn0.75Fe0.25PO4-based hybrid cathode materials[J]. Power Supply Technology, 2023, 48(1): 45-50.
    [21]
    Kosova Nina, Podgornova Olga, Gutakovskii Anton. Different electrochemical responses of LiFe0.5Mn0.5PO4 prepared by mechanochemical and solvothermal methods[J]. Journal of Alloys and Compounds, 2018,742:454-465. doi: 10.1016/j.jallcom.2018.01.242
    [22]
    Deng Yuanfu, Yang Chunxiang, Zou Kaixiang, et al. Recent advances of Mn-rich LiFe1- yMn yPO4 (0.5 ≤ y ≤ 1.0) cathode materials for high energy density lithium ion batteries[J]. Advanced Energy Materials, 2017,7(13):10-16.
    [23]
    Xiao F P, Ding B, Lai O M, et al. High performance LiMn1- xFe xPO4 (0 ≤ x ≤ 1) synthesized via a facile polymer[J]. Journal of the Electrochemical Society, 2017,160(6):918-926.
    [24]
    Wei Xiang, Yan Junzhong, Jun Yiji, et al. Hydrothermal synthesis, evolution, and electrochemical performance of LiMn0.5Fe0.5PO4 nanostructures[J]. Physical chemistry chemical physics, 2019,17(28):29-37.
    [25]
    Zhou Xue, Xie Ye, Deng Yuanfu, et al. The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating[J]. Journal of Materials Chemistry A, 2014,3(3):996-1004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (524) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return