Volume 45 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
Zheng Kui, Zhao Peng, Hu Peng, Huang Yun, Zhang Jianliang, Xu Runsheng. Study on the effects of oxygen enrichment modes on the tuyere raceway states of blast furnace[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 108-118. doi: 10.7513/j.issn.1004-7638.2024.06.015
Citation: Zheng Kui, Zhao Peng, Hu Peng, Huang Yun, Zhang Jianliang, Xu Runsheng. Study on the effects of oxygen enrichment modes on the tuyere raceway states of blast furnace[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 108-118. doi: 10.7513/j.issn.1004-7638.2024.06.015

Study on the effects of oxygen enrichment modes on the tuyere raceway states of blast furnace

doi: 10.7513/j.issn.1004-7638.2024.06.015
More Information
  • Received Date: 2024-01-04
    Available Online: 2024-12-30
  • Publish Date: 2024-12-30
  • In this paper, based on the actual dimension of the vanadium titanomagnetite blast furnace of a domestic enterprise, a three-dimensional physical model is established. The numerical simulation method is used to compare and study the flow and combustion behavior of pulverized coal in the tuyere gyration area under different oxygen enrichment methods. The results show that the overall trend of the tuyere velocity change with the oxygen enrichment rates is consistent with that of the constant air enrichment mode, but the difference in the change amplitude is significant. That is, when the oxygen enrichment rate is increased by 1%, the cross-sectional velocity of the tuyere is increased by 4.25 m/s (fixed air) and 0.41 m/s (reduced air), respectively. Under the two oxygen enrichment modes, the temperature, reducing gas content and burnout rate of the pulverized coal in the gyratory area have the same trend with the oxygen enrichment rates. As temperature increases, the high temperature area expands with the increase in the reducing gas content, and the burnout rate of pulverized coal increases. Among them, the amount of N2 brought into the blast furnace decreases due to the decrease in hot air flow rate, and the content of CO and H2 in the coal gas changes greatly, preventing the formation of carbon nitrides and titanium carbides, and improving the reduction effect of iron ore in the blast furnace. It is calculated that the average temperature of the gyratory zone is increased by 34.22 K (fixed air) and 32.88 K (reduced air) for every 1% increase in the oxygen enrichment rate. Under the condition of reduced air and oxygen enrichment, the N2 content brought into the blast furnace is reduced by 10 m3/min and the CO concentration in the gas is increased by 8.61%.
  • loading
  • [1]
    Zhang Cuiliu, Wang Guangwei, Ning Xiaojun, et al. Numerical simulation of combustion behaviors of hydrochar derived from low-rank coal in the raceway of blast furnace[J]. Fuel, 2020,278:118267. doi: 10.1016/j.fuel.2020.118267
    [2]
    Babich A, Yaroshevskii S, Formoso A, et al. Co-injection of noncoking coal and natural gas in blast furnace[J]. ISIJ International, 1999,39(3):229-238. doi: 10.2355/isijinternational.39.229
    [3]
    Peter Richard Austin, Hiroshi Nogami, Jun-ichiro Yagi. A mathematical model of four phase motion and heat transfer in the blast furnace[J]. ISIJ International, 1997,37(5):458-467. doi: 10.2355/isijinternational.37.458
    [4]
    Dong X F, Yu A B, Chew S J, et al. Modeling of blast furnace with layered cohesive zone[J]. Metallurgical and Materials Transactions B, 2010,41(2):330-349. doi: 10.1007/s11663-009-9327-y
    [5]
    Kuang S B, Li Z Y, Yan D L, et al. Numerical study of hot charge operation in ironmaking blast furnace[J]. Minerals Engineering, 2014, 63: 45-56.
    [6]
    Hannu Helle, Mikko Helle, Henrik Saxén. Nonlinear optimization of steel production using traditional and novel blast furnace operation strategies[J]. Chemical Engineering Science, 2011,66(24):6470-6481. doi: 10.1016/j.ces.2011.09.006
    [7]
    Zhang Wei, Zhang Juhua, Xue Zhengliang, et al. Unsteady analyses of the top gas recycling oxygen blast furnace[J]. ISIJ International, 2016,56(8):1358-1367. doi: 10.2355/isijinternational.ISIJINT-2016-090
    [8]
    Kushnir D, Hansen T, Vogl V, et al. Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study[J]. J Clean Prod, 2020,242:13.
    [9]
    Zhang Fuming, Cao Chaozhen, Meng Xianglong, et al. Technological status and tendency of modern blast furnace[J]. Advanced Materials Research, 2013,813:192-195. doi: 10.4028/www.scientific.net/AMR.813.192
    [10]
    Duan Guojian, Zhao Zhilong. Discussion of blast furnace oxygen enriched coal injection[J]. Hebei Metallurgy, 2017(6):8-12. (段国建, 赵志龙. 高炉富氧喷煤技术探讨[J]. 河北冶金, 2017(6):8-12.

    Duan Guojian, Zhao Zhilong. Discussion of blast furnace oxygen enriched coal injection[J]. Hebei Metallurgy, 2017(6): 8-12.
    [11]
    Zhang Fuming. Technological progress for contemporary ultra large sized blast furnoace[C]// 2012 National Conference on Ironmaking Production Technology and Annual Conference on Ironmaking. Wuxi: Chinese Society for Metals, 2012. (张福明. 当代巨型高炉技术进步[C]//2012年全国炼铁生产技术会议暨炼铁学术年会. 无锡: 中国金属学会, 2012.

    Zhang Fuming. Technological progress for contemporary ultra large sized blast furnoace[C]// 2012 National Conference on Ironmaking Production Technology and Annual Conference on Ironmaking. Wuxi: Chinese Society for Metals, 2012.
    [12]
    Liu Yingshu, Yang Tianjun, Cang Daqiang, et al. The progress of research and development in BF oxygen-coal injection[J]. Ironmaking, 1996(4):9-12. (刘应书, 杨天钧, 苍大强, 等. 高炉富氧喷煤技术研究开发的进展[J]. 炼铁, 1996(4):9-12.

    Liu Yingshu, Yang Tianjun, Cang Daqiang, et al. The progress of research and development in BF oxygen-coal injection[J]. Ironmaking, 1996(4): 9-12.
    [13]
    Cheng Lanbo, Gao Guangchun, Ma Shuhan. Experiment of BF operation with oxygen rich coal injection at Anshan iron and steel[J]. Iron & Steel, 1988(11):1-10. (成兰伯, 高光春, 马树涵. 鞍钢2号高炉富氧大喷吹冶炼试验[J]. 钢铁, 1988(11):1-10.

    Cheng Lanbo, Gao Guangchun, Ma Shuhan. Experiment of BF operation with oxygen rich coal injection at Anshan iron and steel[J]. Iron & Steel, 1988(11): 1-10.
    [14]
    Zeng Weitao, Zhang Qingxi. Operating system adjustment under production limitation mode in WISCO No. 8 BF[J]. Ironmaking, 2022,41(1):6-9. (曾伟涛, 张庆喜. 武钢8号高炉限产模式下操作制度的调整[J]. 炼铁, 2022,41(1):6-9.

    Zeng Weitao, Zhang Qingxi. Operating system adjustment under production limitation mode in WISCO No. 8 BF[J]. Ironmaking, 2022, 41(1): 6-9.
    [15]
    Xiang Mingwu, Zhou Qiang, Zhang Ling, et al. Technical characteristics of Shagang 5800 m3 blast furnace[J]. Ironmaking, 2010,29(2):1-6. (项明武, 周强, 张灵, 等. 沙钢5800 m3高炉工艺技术特点[J]. 炼铁, 2010,29(2):1-6.

    Xiang Mingwu, Zhou Qiang, Zhang Ling, et al. Technical characteristics of Shagang 5800 m3 blast furnace[J]. Ironmaking, 2010, 29(2): 1-6.
    [16]
    Wang Jun, Xu Hui, Zhang Peifeng, et al. Management for maintaining low consumption production in baosteel’s No. 4 BF[J]. Ironmaking, 2020,39(4):1-7. (王俊, 徐辉, 张培峰, 等. 宝钢4号高炉长期低耗生产管理[J]. 炼铁, 2020,39(4):1-7.

    Wang Jun, Xu Hui, Zhang Peifeng, et al. Management for maintaining low consumption production in baosteel’s No. 4 BF[J]. Ironmaking, 2020, 39(4): 1-7.
    [17]
    Liu Yiran, Shen Yansong. Three-dimensional modelling of charcoal combustion in an industrial scale blast furnace[J]. Fuel, 2019,258:116088. doi: 10.1016/j.fuel.2019.116088
    [18]
    Hu Z J, Liu Y R, Xu H, et al. Co-combustion of semicoke and coal in an industry ironmaking blast furnace: Lab experiments, model study and plant tests[J]. Fuel Processing Technology, 2019, 196: 106165.
    [19]
    Shen Y S, Maldonado D, Guo B Y, et al. Computational fluid dynamics study of pulverized coal combustion in blast furnace raceway[J]. Industrial and Engineering Chemistry Research, 2009,48(23):10314-10323. doi: 10.1021/ie900853d
    [20]
    Zhou Zhenfeng, Wang Ruihao, Yi Qiujie, et al. Combustion enhancement of pulverized coal with targeted oxygen-enrichment in an ironmaking blast furnace[J]. Processes, 2021,9(3):440.
    [21]
    Rastko Jovanovic, Aleksandra Milewska, Bartosz Swiatkowski, et al. Numerical investigation of influence of homogeneous/heterogeneous ignition/combustion mechanisms on ignition point position during pulverized coal combustion in oxygen enriched and recycled flue gases atmosphere[J]. International Journal of Heat and Mass Transfer, 2011,54(4):921-931. doi: 10.1016/j.ijheatmasstransfer.2010.10.011
    [22]
    Nie Haiqi, Li Zhaoyang, Kuang Shibo, et al. Numerical investigation of oxygen-enriched operations in blast furnace ironmaking[J]. Fuel, 2021,296:120662. doi: 10.1016/j.fuel.2021.120662
    [23]
    Liu Yiran, Shen Yansong. CFD study of charcoal combustion in a simulated ironmaking blast furnace[J]. Fuel Processing Technology, 2019,191:152-167. doi: 10.1016/j.fuproc.2019.04.004
    [24]
    Shen Y S, Yu A B. Modelling of injecting a ternary coal blend into a model ironmaking blast furnace[J]. Minerals Engineering, 2016,90:89-95. doi: 10.1016/j.mineng.2015.12.009
    [25]
    Liu Yiran, Curtis Jennifer, Shen Yansong. Computational fluid dynamics study of re-blowin operation in an ironmaking blast furnace[J]. Powder Technology, 2020,361:145-159. doi: 10.1016/j.powtec.2019.09.061
    [26]
    Shivadev K Ubhayakar, David B Stickler, Charles W Von Rosenberg, et al. Rapid devolatilization of pulverized coal in hot combustion gases[J]. Symposium (International) on Combustion, 1977,16(1):427-436. doi: 10.1016/S0082-0784(77)80342-1
    [27]
    Du Shanwen, Yeh Chengpeng, Chen Weihsin, et al. Burning characteristics of pulverized coal within blast furnace raceway at various injection operations and ways of oxygen enrichment[J]. Fuel, 2015,143:98-106. doi: 10.1016/j.fuel.2014.11.038
    [28]
    Liao Junhai, Yu Aibing, Shen Yansong. Modelling the injection of upgraded brown coals in an ironmaking blast furnace[J]. Powder Technology, 2016,314:550-556.
    [29]
    Kou Mingyin, Zhou Heng, Hong Zhibin, et al. Numerical analysis of effects of different blast parameters on the gas and burden distribution characteristics inside blast furnace[J]. ISIJ International, 2020,60(5):856-864. doi: 10.2355/isijinternational.ISIJINT-2019-389
    [30]
    Xue Qingguo, Dong Zeshang, Wang Jingsong, et al. The introduction and process optimization research of oxygen blast furnace ironmaking technology [M]//Liu Xingbo, Liu Zhengdong, Brinkman Kyle, et al. Energy Materials 2017. Cham: Springer International Publishing, 2017: 31-39.
    [31]
    Zhou Zhenfeng, Xue Qingguo, Li Changle, et al. Coal flow and combustion characteristics under oxygen enrichment way of oxygen-coal double lance[J]. Applied Thermal Engineering, 2017,123:1096-1105. doi: 10.1016/j.applthermaleng.2017.05.177
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (447) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return