Citation: | Liu Jingjing, Zhang Zelan, Zhao Wei. Synthesis and properties of Tb modified BiVO4/BiOCl composite photocatalysts[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 39-46. doi: 10.7513/j.issn.1004-7638.2021.04.007 |
[1] |
Kudo A, Ueda H K, Mikami I. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution[J]. Catalysis Letters, 1998,53(3−4):229−230.
|
[2] |
Monfort O, Plesch Gustav. Bismuth vanadate-based semiconductor photocatalysts: A short critical review on the efficiency and the mechanism of photodegradation of organic pollutants[J]. Environmental Science and Pollution Research, 2018,25:19362−19379. doi: 10.1007/s11356-018-2437-9
|
[3] |
Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. Journal of the American Chemical Society, 1999,121(49):11459−11467. doi: 10.1021/ja992541y
|
[4] |
Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J]. Chemistry of Materials, 2001,13(12):4624−4628. doi: 10.1021/cm0103390
|
[5] |
Zhu Z, Yang C X, Hwang Y T, et al. Fuel generation through photoreduction of CO2 on novel Cu/BiVO4[J]. Materials Research Bulletin, 2020,130:110955. doi: 10.1016/j.materresbull.2020.110955
|
[6] |
Tayebi M, Lee B K. The effects of W/Mo-co-doped BiVO4 photoanodes for improving photoelectrochemical water splitting performance[J]. Catalysis Today, 2021,361:183−190. doi: 10.1016/j.cattod.2020.03.066
|
[7] |
Wang L Y, Bian Z Y. Photocatalytic degradation of paracetamol on Pd-BiVO4 under visible light irradiation[J]. Chemosphere, 2020,239:124815. doi: 10.1016/j.chemosphere.2019.124815
|
[8] |
Li Z L, Jin C Y, Wang M, et al. Novel rugby-like g-C3N4/BiVO4 core/shell Z-scheme composites prepared via low-temperature hydrothermal method for enhanced photocatalytic performance[J]. Separation and Purification Technology, 2020,232:115937. doi: 10.1016/j.seppur.2019.115937
|
[9] |
Wang Y L, Yu D, Wang W, et al. Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity[J]. Separation and Purification Technology, 2020,239:116562. doi: 10.1016/j.seppur.2020.116562
|
[10] |
(王敏, 朱彤, 吕春梅. 钒酸铋光催化剂及其应用[M]. 北京: 化学工业出版社, 2017.)
Wang Min, Zhu Tong, Lv Chunmei. BiVO4 photocatalytic and application[M]. Beijing: Chemical Industy Press, 2017.
|
[11] |
Xu H, Wu C D. Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO4 catalysts[J]. Applied Surface Science, 2009,256:597−602. doi: 10.1016/j.apsusc.2009.05.102
|
[12] |
Luo Y Y, Tan G Q, Dong G H, et al. A comprehensive investigation of tetragonal Gd-doped BiVO4 with enhanced photocatalytic performance under sun-light[J]. Applied Surface Science, 2016,364:156−165. doi: 10.1016/j.apsusc.2015.12.100
|
[13] |
Orona-Návar C, Levchuk I, Moreno-Andrés J, et al. Removal of pharmaceutically active compounds (PhACs) and bacteria inactivation from urban wastewater effluents by UVA-LED photocatalysis with Gd3+ doped BiVO4[J]. Journal of Environmental Chemical Engineering, 2020,8(6):104540. doi: 10.1016/j.jece.2020.104540
|
[14] |
Zhang Aiping, Zhang Jinzhi. Synthesis and activities of Ln-doped BiVO4(Ln=Eu, Gd and Er) photocatalysts[J]. Chinese Journal of Inorganic Chemistry, 2009,25(11):2040−2047. (张爱平, 张进治. Ln掺杂BiVO4(Ln=Eu、Gd、Er)光催化剂的制备和活性研究[J]. 无机化学学报, 2009,25(11):2040−2047. doi: 10.3321/j.issn:1001-4861.2009.11.027
|
[15] |
Zhang A P, Zhang J Z. Effects of europium doping on the photocatalytic behavior of BiVO4[J]. Journal of Hazardous Materials, 2010,173:265−272. doi: 10.1016/j.jhazmat.2009.08.079
|
[16] |
Pei Z Z, Jia H, Zhang Y L, et al. A one-pot hydrothermal synthesis of Eu/BiVO4 enhanced visible-light-driven photocatalyst for degradation of tetracycline[J]. Journal of Nanoscience and Nanotechnology, 2020,20:3053−3059. doi: 10.1166/jnn.2020.17446
|
[17] |
Liao Rui, Huang Heyan, Li Yuanli, et al. Preparation, crystal structure and spectral properties of bismuth vanadate nanocrystals doped with rare earth ions[J]. Journal of the Chinese Ceramic Society, 2020,48(5):739−744. (廖蕊, 黄鹤燕, 李园利, 等. 稀土离子掺杂钒酸铋纳米晶的制备、晶体结构特征及光谱性质[J]. 硅酸盐学报, 2020,48(5):739−744.
|
[18] |
Luo Y Y, Tan G Q, Dong G H, et al. Effects of structure, morphology, and up-conversion on Nd-doped BiVO4 system with high photocatalytic activity[J]. Ceramics International, 2015,41(2):3259−3268. doi: 10.1016/j.ceramint.2014.11.016
|
[19] |
Monfort O, Sfaelou S, Satrapinskyy L, et al. Comparative study between pristine and Nb-modified BiVO4 films employed for photoelectrocatalytic production of H2 by water splitting and for photocatalytic degradation of organic pollutants under simulated solar light[J]. Catalysis Today, 2017,280:51−57. doi: 10.1016/j.cattod.2016.07.006
|
[20] |
Wang Weixuan, Chen Ruizhi, Wu Ping, et al. Photocatalytic properties of Nd3+-doped heterojunction ms/tz-BiVO4 under visible light[J]. Inorganic Chemicals Industry, 2018,50(2):75−78, 82. (王伟玄, 陈睿智, 伍平, 等. Nd3+掺杂ms/tz-BiVO4可见光催化性能研究[J]. 无机盐工业, 2018,50(2):75−78, 82.
|
[21] |
Chen R Z, Wang W X, Jiang D M, et al. Hydrothermal synthesis of Nd3+-doped heterojunction ms/tz-BiVO4 and its enhanced photocatalytic performance[J]. Journal of Physics and Chemistry of Solids, 2018,117:28−35. doi: 10.1016/j.jpcs.2018.02.010
|
[22] |
Xu Jingwei, Li Zheng, Wang Zepu, et al. Morphology and photocatalytic performance regulation of Nd3+-doped BiVO4 with staggered band structure[J]. Journal of Inorganic Materials, 2020,35(7):789−795. (徐晶威, 李政, 王泽普, 等. 交错能带结构钕掺杂钒酸铋形貌与光催化性能调控[J]. 无机材料学报, 2020,35(7):789−795.
|
[23] |
Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2012,4(7):3718−3723.
|
[24] |
Xu J, Wang W Z, Wang J, et al. Controlled fabrication and enhanced photocatalystic performance of BiVO4@CeO2 hollow microspheres for the visible-light-driven degradation of rhodamine B[J]. Applied Surface Science, 2015,349:529−537. doi: 10.1016/j.apsusc.2015.04.195
|
[25] |
Gu S N, Li W J, Wang F Z, et al. Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: Effect of heterojunction structure on the enhancement of photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015,170-171:186−194. doi: 10.1016/j.apcatb.2015.01.044
|
[26] |
Gu S N, Li W J, Wang F Z, et al. Substitution of Ce(III, IV) ions for Bi in BiVO4 and its enhanced impact on visible light-driven photocatalytic activities[J]. Catalysis Science & Technology, 2016,6:1870−1881.
|
[27] |
(曹保卫. 钒酸铋基半导体光催化剂的水热合成光催化性能研究[D]. 西安: 西安建筑科技大学, 2014.)
Cao Baowei. Controllable synthesis and photocatalytic activitiea research of bismuth vanadate[D]. Xi, an: Xi,an University of Science and Technology, 2014.
|
[28] |
Luo Y Y, Tan G Q, Dong G H, et al. Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light[J]. Applied Surface Science, 2015,324:505−511. doi: 10.1016/j.apsusc.2014.10.168
|
[29] |
Zhu S W, Li Q G, Huttula M, et al. One-pot hydrothermal synthesis of BiVO4 microspheres with mixed crystal phase and Sm3+-doped BiVO4 for enhanced photocatalytic activity[J]. Journal of Materials Science, 2017,52:1679−1693. doi: 10.1007/s10853-016-0460-0
|
[30] |
Gu S N, Li W J, Bian Y Z, et al. Highly-visible-light photocatalytic performance derived from a lanthanide self-redox cycle in Ln2O3/BiVO4 (Ln: Sm, Eu, Tb) redox heterojunction[J]. The Journal of Physical Chemistry C, 2016,120(34):19242−19251. doi: 10.1021/acs.jpcc.6b06436
|
[31] |
Wang Y, Liu F Y, Hu Y J, et al. Microwave synthesis and photocatalytic activity of Tb3+ doped BiVO4 microcrystals[J]. Journal of Colloid and Interface Science, 2016,483:307−313. doi: 10.1016/j.jcis.2016.08.048
|
[32] |
Ma X M, Ma Z, Liao T, et al. Preparation of BiVO4/BiOCl heterojunction photocatalyst by in-situ transformation method for norfloxacin photocatalytic degradation[J]. Journal of Alloys and Compounds, 2017,702:68−74. doi: 10.1016/j.jallcom.2017.01.214
|
[33] |
Song L J, Pang Y Y, Zheng Y J, et al. Design, preparation and enhanced photocatalytic activity of porous BiOCl/BiVO4 microspheres via a coprecipitation-hydrothermal method[J]. Journal of Alloys and Compounds, 2017,710:375−382. doi: 10.1016/j.jallcom.2017.03.283
|
[34] |
Liu Jingjing. Preparation and performance of manganese dioxide/bismuth vanadate composite photocatalysts[J]. Chemical Research and Application, 2019,31(4):644−651. (刘景景. 二氧化锰/钒酸铋复合光催化剂的制备及性能[J]. 化学研究与应用, 2019,31(4):644−651. doi: 10.3969/j.issn.1004-1656.2019.04.009
|